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PREFACE

This course aims to provide a modern formulation of finite element analysis for modelling engineering
systems. The main idea of modelling is to use physical principles and mathematics to arrive at an
approximate description of phenomena. These phenomena span a wide range of situations in civil
engineering that demand predictive capabilities. A few examples: material behaviour of human-made
materials, stability of structures, and transport of heat, water, or contaminants. In structural engineering,
one of the responsibilities of the design engineer is to use predictive tools to devise arrangements and
establish proportions of members — to withstand, economically and efficiently, the conditions anticipated
over the lifetime of a structure. In environmental engineering the description of phenomena is used to
improve the natural environment, to provide healthy water, air, and soil for humans and ecosystems, and to
remediate pollution produced by human activities.

Mathematical modelling complements methods based on empirical experience. Empiricists base their
formulae and design decisions on experimental analysis, and this approach can be very competitive and
effective if the analysis is carried out properly. Repeatability, rapidity, and reliable accuracy are among its
strengths; but the major disadvantage of the empirical method is that it usually yields only one data point
of information in the spectrum of the physics involved. If the system is changed from the originally tested
specimen (perhaps in dimensions, materials, or loading conditions), the experiment needs to be repeated on
the new structure. The costs can be prohibitive.

Experiments should be used as the starting point of any investigation. Results of experimental tests provide
a window of insight, and hence clues to the behaviour of the structure and the phenomenon governing it.
The best engineering approach to a problem is to evolve mathematical methods based on mechanical
principles and experimental insight, and to use empirical methods for the ultimate verification of any
theoretical or numerical solutions obtained through modelling.

Development of mathematical models leads to a set of differential equations called governing equations.
In just a few cases it is possible to solve these equations analytically. With analytical expressions we
achieve explicit derivation of unknown variables in terms of the known parameters using well-known
mathematical functions. These expressions are closed form solutions, and often they make strong
assumptions — such as perfect elasticity, and extremely simplified geometry. But real engineering problems
often require a detailed description of the geometry of systems, like the cross section of a beam or a retaining
wall; or they may be insoluble without a complex specification of material behaviour, perhaps with non-
linearity or irreversibility. In these cases, elegant analytical solutions are not available. We use numerical
analysis instead, which involves the use of algorithms implemented on computers to arrive at approximate
solutions of the governing equations, to the necessary degree of precision.

Thanks to the rapid increase of computer power, numerical analysis is one of the fastest-growing areas in
engineering. Finite element modelling is among the most popular methods of numerical analysis for
engineering, as it allows modelling of physical processes in domains with complex geometry and a wide
range of constraints. The basic idea of finite element modelling is to divide the system into parts and apply
the governing equations at each one of them. The analysis for each part leads to a set of algebraical
equations. Equations for all of the parts are assembled to create a global matrix equation, which is solved
using numerical methods. The beauty of finite element modelling is that it has a strong mathematical basis
in variational methods pioneered by mathematicians such as Courant, Ritz, and Galerkin. The people who



actually elaborated the method were engineers working toward greater stability for fuselages and wings of
aircraft. In 1943 Richard Courant (in the United States, having left Germany early in World War 1) came
up with the first finite element modelling using nothing more than high-school mathematics. In 1960, John
Argyris (University of Stuttgart) leaded a large group of mathematicians and engineering that established
the mathematical basis of the method to allow its application to problems beyond structures, such as seepage
analysis, heat transfer, and long-time settlement.

In the sixties, the golden age of finite element modelling, scientists and engineers pushed the boundaries of
its application, and developed ever more efficient algorithms. Nowadays, finite element analysis is a well-
established method available in several commercial codes. But numerical analysis research has not stopped
there! In the area of fluid mechanics mesh-free methods have been proposed, which do not require the mesh
used in finite elements. Discrete element methods have been developed with the aim of investigating
systems of many parts interacting via contact forces. Enthusiasm for these models has spilled beyond the
borders of science and engineering. We are entering in a new era of virtual reality (VR), where it is difficult
to distinguish reality from simulations. VR are now used in computer games, have inspired movies such
as Matrix, and has suggested that we may actually be part of an interactive computer simulation. Such
fascinating advances in computer modelling would be impossible without the exploitation of our infinite
analytical capabilities to reshape the vision of the word using computers.

Welcome to the fascinating world of the numerical modelling!



Chapter 1
INTERPOLATION

In the finite element method, the structure to be analysed is divided into a number of elements that join with
each other at a discrete number of points or nodes. The method assumes that the displacement at any point
inside the element is a given in terms of of the displacement at the nodes. In fact, the displacement is only
evaluated at the nodes and the displacement at any other point is inferred from these nodal values by
interpolation.

In this Chapter we will introduce the shape functions. These functions provide a polynomial interpolation
of the nodal displacement to any other point of the domain. Expressing the displacement in term of shape
functions and nodal displacement will be very used to calculate the strains and stress from the derivatives
of the displacement field. We will introduce a general method for derivation of the shape function with
different polynomial orders.

1.1 One-dimensional interpolation

A polynomial interpolation is used in derivation of the stiffness matrix for most of the finite elements. The
use of polynomial functions allows high order elements to be formulated. In this section linear and quadratic
interpolation functions are discussed.

Linear interpolation

Consider that a continuous function w(x) is to be approximated over the interval x;<x<x using a linear
function (Figure 1-1). The values of the function at point 1 and 2 are W1 and W>, respectively. Assume that
the function w(x) can be approximated by a linear function such as:

w(x) = a, + a, X (1.1)

where a; and a2 are unknown coefficients of the function. The coefficients can be determined from the
known values at points 1 and 2.

W1 = W(Xl) =4, +a,X;

1.2
W, = W(Xz) =a +a, X,
This set of equations can be solved for the unknown coefficients:
W, x, —W,x W, -W
a,=—12" 2% g - T2” h (1.3)
Xy =Xy X, =X
Therefore, the value of the function w at any point x within the interval x;<x<x, can be expressed as:
W x, -W,x, W, -W,
wx)=—2-2——214_2 1y (1.4)
Xy =X Xy =X
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X1 X2 X

Figure 1-1 Linear interpolation

Rearranging the above equation results in:

_ X=X X—X,

w(X) W, + 2
Xy =Xy Xy =Xy
or:
W(X) =N, (X) W, + N,(x) W,
X, =X X —X
where Ny (X) = % and N,(X) = —Xl are called the shape functions.
27 M 27 M

Y

(15)

(1.6)

The shape functions depend only on the geometry of the nodal points and the type of the interpolation
function used. The shape functions N1(x) and N2(x) vary linearly between x1 and x> as shown in Figure 1-2.
Note that the value of the shape function N1(x) is 1 at point 1 and zero at point 2. Similarly, the value of the

shape function N2(x) is 1 at point 2 and zero at point 1.

N)A
1 2
1
N1 N>
0 >
X1 X2 X

Figure 1-2 Linear shape functions

Quadratic interpolation

Consider that the value of a continuous function w(x) is to be approximated over the interval x;<x<xsz using
a quadratic function (Figure 1-3). The values of the function at point 1, 2 and 3 are W1, W2 and W3,

respectively.



X1 X2 X3 X

Figure 1-3 Quadratic interpolation

The function w(x) can be approximated by a polynomial quadratic function such as:
W(X) = a, +a, X + a, x* .7

where a; to az are unknown coefficients of the function. The coefficients can be determined from the known
values at points 1, 2 and 3.

W, = w(x,) =a, +a,X, +a;X;
W, = w(x,) = a +a,X, +a, X (1.8)
W, = w(x,) = a, +a,X, +a,X;
This set of equations can be solved for the unknown coefficients:
(X, = X)X X, W, + (X5 =X )X X, W, 4+ (X, =X, )X, X, W,
(X, =X, ) (X, = %5 ) (X5 =X, )
o, O XW, + O —XW, + 0 W, L9
(% =%, ) (X, =X ) (X5 =)
(X, = X)W, + (X3 =X )W, + (X, =X, )W,
(X, =%, ) (X, =% ) (X3 =Xy )
Substituting a1, a2 and az into Eq. (1.7) results in a quadratic interpolation as a function of nodal values:
wW(x) =N, (X) W, + N, (X) W,+ N,(xX) W, (1.10)

a,=-

a,=-

(X =%, (X =xy) (X =x)(x =xy) (X =x)(x =x,)
where Nl(X)_(Xl—XZ)(Xl—X3) , NZ(X)_(XZ_Xl)(XZ_XS) , N;(X) = S =y are the
quadratic shape functions.

The quadratic shape functions vary quadratically between x1 and x3 as shown in Figure 1-4. The value of
the shape function N1(x) is1 at point 1 and zero at points 2 and 3. Similarly the value of the shape function
N2(x) is 1 at point 2 and zero at points 1 and 3, and the value of the shape function N3(x) is 1 at point 3 and
zero at points 1 and 2.

10
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Figure 1-4 Quadratic shape functions

The method used above for calculation of the linear of quadratic shape functions can be applied to calculate
higher order interpolation functions. However, for higher order polynomials it is difficult to find the
unknown coefficients. An alternative method is presented in the next section that is applicable to all types
of one or two-dimensional interpolation functions.

1.2 General procedure for derivation of shape functions

Suppose an element has m nodes and the values of some quantity of interest (w), such as displacement,
head, temperature, are known at each of the nodes. It is assumed that within the element the variation of w
at position x can be approximated by a polynomial expression:

w(x) = a,f,(x) + a,f,(x) + .... +a,f,xX) + .... + a,f (X (1.11)

where ax are polynomial coefficients and fxare known functions of the position x. Eq. (1.11) can be written
in matrix format as:

w(x) =a'.f(x) = fT(x).a (1.12)
where a=[as, a, ..., ak, .. am]" and f(x) = [fi(X) , f2(x) , ..., f(X) , ..., fn(X)] T
Suppose that the element nodes are located at the points X1, X2, ...., Xm. At the k™ node the value of the
quantity w is:
W, = af(x,) + af,(x,) + ...af (X)) + .... +a,f. (X) (1.13)
Eq. (1.13) holds at each of the m nodes. These equations may be written in matrix form as follows:
W=_C.a (1.14)
where
a, W, L) B0 - fx) L (k)
2 W, fi(x;) f.(x) ... flx;) .. fi(xy)
acl | we ool
ay W, fx) fx) .0 fx) .o fL(x)
_am_ _Wm_ _fl(xm) fz(xm) o fk(xm) o fm(xm)_
The solution of Eq. (1.14) is:
a=C'wW (1.15)

11



When a from Eq. (1.15) is substituted into Eq. (1.12) it is found that the quantity of interest can be expressed
in the form of:

w(x) = fT(x).C"W = N"(x) W (1.16)
where NT(x)= f1(x).C = [ N1(x), N2(x), ...., Nk(x), ... Nm(X) ] is the vector of shape functions.

If Eq. (1.16) for w(x) is written out in full it takes the form of:
wW(Xx) = W,N, (X) + W,N,(X) + .... + W.N,(X), ....+ W_N_(x) (1.17)

The above equation expresses the value of the quantity w at any position x in terms of the m nodal values W1
to W and the shape functions N1(x) to Nm(x) which can be determined from Eq. (1.16). Assume that the
inverse of the matrix C is:

| (118)
Ymi 7 YVm

where the coefficients yij are known values. Thus the vector of shape functions is:

v+ - )Y !
NT(x)=f"(x)C" = : (1.19)
0+ o (Yo
Therefore each of the shape functions N is given by:
N, = LX)y, + L&Yy + oo + XV + oo+, ()Y 0 (1.20)

Example 1.1

The linear shape functions for a one-dimensional two-noded element can be found using the generalized
method. The function used for approximation of w at position X is:

wx) =a, +a,x = [Lx].[a,8,] =f(x.a

where fT(x) = [f1(x), f2(x)] = [1, X] and a=[as, a2]". Then matrix C can be written as:

{1 xl}
C=
1 X,

Therefore the vector of the shape functions is calculated as:

12



X, =X X, =X
NT(X):fT(X).C_1=[1, X] 2 1 2 1 =|:( X, _ X J’(_ X, n X j:|
1 1 X, =X, X, =X, X, =X, X, =X,

And the shape functions for linear one-dimensional elements are:
X, — X X=X,

—X

N, (X) = and N,(x) =

2 Xy 2 1

Example 1.2
The quadratic shape functions for a one-dimensional three-noded element can be found as follows.

wix) = a, +a,x +a,x* = [1,xx*] . [a, 2, a,]" = f'(x).a

where fT(x) = [f1(X), f2(X), f3(X)] = [1, X, X?] and a=[as, az, as]". Then matrix C is:

2

1 x, X
C=[1 x, %5
1 x, X
i X2X3 X1 X3 XiX, |
(Xl_XZ)(Xl_XS) (XZ—XI)(Xz—X3) (X3—X1)(X3—X2)
C71= _ X, +Xq _ X, +X; _ X, +X,
(X1_X2)(X1_X3) (Xz_xl)(xz_xs) (X3—X1)(X3—X2)
1 1 1
L (Xl_XZ)(Xl_XS) (XZ—Xl)(XZ—X3) (Xa_xl)(xs_xz) |

Therefore the vector of the shape functions for quadratic one-dimensional elements is calculated as:

NT(X):fT(X)Clz{( (X=X,) (X =X,) J’[((x—xl)(x—xs) j[ (x=x%,)(x=x,) ﬂ

(X, =%, ) (X, —X3) X, =X ) (X, =%3) ) L (X5 =%, ) (X3 —X,)

1.3 Two-dimensional interpolation

The general method explained in the previous section can be used to derive the shape functions for
two-dimensional elements. The shape functions for linear triangles and rectangles are calculated here. The

quadratic shape functions for a triangular element are also derived for a specific case.

Linear triangles

Consider the quantity w is known at 3 nodes of a triangular element having its vertices at nodes 1, 2 and 3
as shown in Figure 1-5 The coordinates of nodes 1 to 3 are (X1,y1), (X2,y2), and (xs,y3) respectively and the
values of w at nodes are W1, W> and Wa. If it is assumed that within the element the variation of w is linear
with respect to x and y, then the value of w at position (x, y) can be approximated by a simple polynomial

expression such as:

13



w(x,y) = a,+ a, X +a, y (1.21)

or

wix,y) = [1,xY]. [al,az,aa]T =f'(x,y).a

X

X1 X3 Xo

Figure 1-5 Linear triangular element

The values of w are known at the nodes. Therefore, Eq. (1.21) can be written for all the nodes by substituting
the coordinates of the nodes into Eq. (1.21):

W =a +a,x +ay,
W, =a +a,Xx, +a,Y, (1.22)
W, =a +a,X; +2a;Y,
or
W, 1 X v |la
W, |=|1 %X, Vy,||a,| or W=C.a
W, 1 X, Yy;|la,
The quantity w(X, y) can now be expressed in the form of:
w(x,y) = f7(x,y).C W = N'(x, y) W
N, (% Y)W, + N, (X, y).W, + N,(X, y).W,

(1.23)

with

Xo¥3 =X3Y2 XY =Xi¥Ys XY, =X5Y,
Y2~ Y3 Ys— V1 Yi—Y
X3 =X, X1 = X3 X, =Xy

cl=—
2A

and 2A=det [C]= (X2y3—Xay2)- (X1y3—X3y1)+ (X1y2—X2y1) =2xarea of triangle.

The shape functions can be found as:

14



Xo¥s = XY, X3¥Yi—X¥Y; XY, XY,

_ 1
NT(X'y) - fT(X’y)C ‘= ﬂ[l’ X, y] Y2—Ys Ys=Y1 Yi—=Y» (1-24)
X3 =X, X1 — X5 X, =X
i (X,¥5 —X5Y,) +X(Y, —Y;3) + V(X5 = X,) ]
N;(x.3) (X,Y, — X )+x(2A— )+ Y(X, —X,)
N(x,y) _ Nz(x’ y) _ 3Y1 1Ys Y; —Y:) tYX, 3 (1_25)
N, (X, Y) 2A
v (lez — X2y1) + X(y1 B yz) + y(xz — Xl)
L 2A i

The correctness of the shape functions may be verified by checking the following conditions:

1) Z N, (X, y) =1 at every point within the element

N;(x,y)=1 atnodeiwherex =x,andy=y,
N.(x,y) =0 atall nodes k where k #1i

It can be shown that the sum of all the shape functions is equal to 1, so that condition 1 is satisfied.
Condition 2 is also true for all the shape functions. For example, at node 1, X = Xy and y = yx:
(X2y3 _X3y2) + Xl(yz _Y3) + yl(x3 _Xz)

N,(X,,Y,) = =1
H ' (X2y3 - X3y2) - (le3 - X3y1) + (leZ - XZyl)

Atnode 2, X =Xz and y = y:

) _ (Xzys _Xsyz) +X, (yz _ys) +y2(X3 _Xz) =0
= N =

N,(X,, Y,

Atnode 3, x =xzand y = ys:

Nl(X3, y3) - (Xzya _Xsyz) +X3(;/Z_ ys) +y3(X3 _Xz) -0

Example 1.3

Consider a seepage analysis and suppose that the head has been determined at 3 vertices (nodes) of a
triangular element. The coordinates (X, y) of the nodes and the value of the head (h) are shown in the table
below:

Node X (m) y (m) H (m)
1 0.4 0.6 1.832
2 4.0 1.4 66.76
3 14 3.0 - 8.968

If it is assumed that the head may be approximated linearly throughout the element by the simple

expression:

h(x,y) =a, +a,x +a,y

Determine the head at point X, = 2.0, yo = 1.5.



The variation of h can be approximated as:
h(x,y) = NT(¢ y).H = N, (X, y).H, + N,(x, y).H, + Ny(x, y).H,
where H=[1.832, 66.76, -8.968] is the vector of the known nodal head values.

The shape functions for the triangular element can be calculated from Eq. (1.25)

| (%,Y5 = X5Y5) +X(Y, — ¥5) + V(X5 —X,) |
N, (X, y) 24 1+1.281—0.204x — 0.332y
N(X,y) = Nz(X' y) |= (X3y1 — les) + X(ys — yl) + y(X1 — Xa) =| —0.046 +0.306x — 0.128y

2A
N, (X, —0.235-0.102x + 0.459
3(X y) (lez _X2y1)+x(yl —y2)+Y(X2 _Xl) X+ y

2A

The values of the shape functions at point xo = 2.0, yo = 1.5 are:

N, (X, Y,) +1.281-0.204x2.0—-0.332x 1.5 0.375
N(X,,v,) — N(2.0,15) — | N,(X,,y,) | — | —0.046+0.306x2.0-0.128x1.5 | — | 0.375
N, (X,, Y,) ~0.235-0.102x2.0+0.459x 1.5 0.25

h(X,,Y,) = N"(X,,¥,)-H = N,(X,, ¥, )-H + N,(X,,¥,)-H, + Ny(X,,Y,)-H,
h(2.0,1.5) = {0.375, 0.375, 0.25} . {1.832, 66.76, -8.968}" =23.48m

The shape functions can be used to obtain other quantities of interest, for example the hydraulic gradients:

O(NT(x, y).H T
L (N Y)H) _on (Y) - NG ) N0 N Y)
OX OX OX OX OX OX

3

The derivatives of the shape functions with respect to x and y are:

ON, (X, y)/ox —0.204 oN, (X, y)/oy —-0.332
ON(x,y) ON(X,y)
“ox ON, (X, y)/ox |=|+0.306 | and ————==| 0N, (X, y)/oy |=|—0.128
ON, (X, y)/lox —-0.102 ON, (X, y)/oy +0.459

It can be seen that the derivatives of the shape functions, which were derived according to a linear
interpolation function, have constant values over the entire area of the triangular element. Therefore, at
point Xo = 2.0, yo = 1.5, or at any other point within the triangle, the hydraulic gradients with respect to x
and y are:

ix =-0.204 x 1.832 +0.306 x 66.76 + 0.102 x 8.968 = 20.978 m/m

iy =-0.332 x 1.832 — 0.128 x 66.76 — 0.459 x 8.968 = -13.241 m/m

16



Linear rectangles

The shape functions for a rectangular element are derived in this section by a direct method as well as by

the general procedure explained in the previous section.

A rectangular element which lies in the x, y plane and has sides of length A and B has its nodes at P1(0,0),
P2(A,0), P3(A,B), P4(0,B). Suppose that throughout the element the variation of w can be approximated as

follows:
_ X y Xy
WXY)=ata,— tas=- ta,——
( y) 1 2A 3B 4AB
If w is evaluated at the 4 nodes of the rectangular element it follows that:

W, = a

W, =a +a,

W, =a +a, +a, +a,
W, = a, + a,

Solving Eqg. (1.14) for the coefficients az, --,a4 results in:

a, =W,
a, :W2_W1
a, =W, - W,

a, =W, +W, -W, - W,
If Eq. (1.28) is substituted in Eq. (1.26) it is found that:

X X
WOKY) = Wi+ (W, = W)+ (W wo§+(w1+ Ws — W, — W4)A—3é

or upon collecting terms:

X X
o) =W - 2 = L ) rwan - D) W (A2) W
This may be rewritten:

W(X,Y) = Wi Ni(X,y) + W2N2(XY) + WsNs(X,y) + WaNa(X,y)

where N are the shape functions and in this case have the explicit expressions:

y Xy y
N,(xY) = 1‘K“ 2 =0-2)0-2)

B AB
N, (Xy) = X‘E A(—y)
N(XY)_E
N, xy) =2 -2 =2 (1-7)

£ -

(1.26)

(1.27)

(1.28)

(1.29)

Xy

(1.30)

The correctness of the shape functions can be checked; each of the shape functions N takes the value 1 at
the node i but zero at all other nodes. This is a general property of shape functions and ensures that w= Wi;
at each of the nodes i. The sum of all the shape functions at any arbitrary point (x,y) is equal to 1.

17



The general procedure explained in the previous section can also be followed to derive the shape functions
for the rectangular element.

— X y Xy Xy Xy T _eT
wx,y)=a;ta,— ta;=— ta,—=|1, —, =, — |.(a,, a,, a,, a,) =T (X)y).a 1.31
(y) ai azA asB 8.4AB ( A B Bj(l 21 93 4) (y) ( )

Therefore:
1 x,/A vy, /B xy,/AB 1000
Co 1 x,/A vy,/B Xx,y,/AB _ 1100
1 X,/A y,/B xy,/AB| |1 1 1 1
1 x,/A vy,/B xy,/AB| |1 010
1 0 0 O
clo -1 1 0 0
/-1 0 0 1
1 -1 1 -1
Then the shape functions can be derived from:
1 0 0 O
-1 1 0 O
NT(y) = FT(xy)Ct=[1, =, X, ﬁ] 1.32
bey) bey) [ABAB -1 0 0 1 (1.32)
1 -1 1 -1
As:
y Xy y
N, (X 1- X Y Y XY
[(xy) = A B ag 1 )( )
X Xy X y
N,(x,y)=———=—(1-=
2 (X,y) A 2B A( B) s
Xy .
N, (X)y)=——
sXY) =g
Yy xy_y
N,(x,y) = -—
J(xy) = 5 AB B( ~)

The above expressions for the shape functions are identical to those obtained previously, Equation (1.30)

Quadratic triangle

The shape functions for a 6-noded triangular element are derived here for a specific case using the general
procedure explained in Section 1.2.

Suppose that in a seepage analysis the head has been determined at 6 nodes of a triangular element having
its vertices at nodes 1, 3, 5. Nodes 2, 4 and 6 are located at the mid-side of the triangle. The coordinates (X,
y) of the nodes and the value of the head (h) are shown in the table below:
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Node X (m) y (m) H (m)
1 0.4 0.6 1.832
2 2.2 1.0 22.968
3 4.0 1.4 66.760
4 2.7 2.2 27.488
5 1.4 3.0 - 8.968
6 0.9 1.8 -1.248

Assume that the head may be approximated throughout the element by a polynomial expression:

h(xy) =a, +a,X+a,y+a, x> +a,xy+a,y> =f'(xy)a

h(x\y) = I:l Xy x? Xy y2 :I[al a, a3 a8, a; ae]T= fT(x'y)a
Therefore matrix C is calculated as:

(100 040 060 0.16 0.24 0.36]
1.00 220 100 484 220 1.00
1.00 4.00 1.40 16.00 5.60 1.96
100 270 220 7.29 594 484
1.00 140 3.00 196 4.20 9.00
11.00 090 180 081 162 3.24

[ 200 -0.24 005 004 034 -1.20]
-084 161 -036 -0.27 020 -0.33
-137 -059 015 0.04 -089 266

008 -025 019 -0.12 0.02 0.08
0.27 -030 -0.16 0.61 -0.19 -0.24
| 022 017 003 -023 042 -061

Thus the shape functions for the 6-noded triangular element are:

-4 T

1] [ 200 -0.24 0.05 004 034 -1.20]
X -0.84 161 036 -027 020 -0.33
y -1.37 -059 015 0.04 089 266
x*| | 008 -025 0.19 -0.12 002 0.08
Xy 027 -030 -016 061 -0.19 -0.24
y’| | 022 017 003 -023 042 -0.61]

NT (X!y) = fT ()(!3/)071 =

+2.00—0.84x —1.37y +0.08x2 +0.27xy + 0.22y? |
~0.24+1.61x —0.59y — 0.25x* —0.30xy + 0.17y?
+0.05—0.36x +0.15y + 0.19x% — 0.16xy + 0.03y?
+0.04—0.27x + 0.04y —0.12x* +0.61xy — 0.23y?
+0.34+0.20x —0.89y + 0.02x* — 0.19xy + 0.42y?
| —1.20-0.33x +2.66y + 0.08x* — 0.24xy — 0.61y* |

N(x,y) =

The head at point X, = 2.0, yo = 1.5 can be calculated as:
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h(X,, ¥o) = NT(X,, ¥o)-H = f'(x,,y,).C* . H
(X, ¥,) = [1,2,15,4.0,3.0,2.25]

[1.00| [ 200 -0.24 005 0.04 034 -1.20]
2.00 -0.84 161 -036 -0.27 020 -0.33
1.50 -1.37 -059 015 0.04 -0.89 2.66
400| | 0.08 -0.25 0.19 -0.12 0.02 0.08
3.00 0.27 -030 -0.16 0.61 -0.19 -0.24

1225 | 022 017 0.03 -023 042 -0.61]

NT(2,1.5)=f"(2,1.5).C" =

NT(2, 1.5) = [—0.094 ,0.563, —0.094,0.375, —0.125, 0.375]

h(2,1.5) = N"(2, 1.5).H = 17.45m

The hydraulic gradient with respect to x can be calculated as follows:

L _antxy) _ANTeH) aNTey) | o(FTNCT) ot o y) Ly

X OX ox ox ox ox
where ofT(x,y)/ ox =[0, 1,0, 2x,y, 0]. At point xo=2.0, yo=1.5: 6fT(Xo, Yo)/ 6x =[0,1,0,4, 1.5, Q].
The hydraulic gradient at Xo=2.0, yo=1.5 is calculated as ix=18.2m/m. The hydraulic gradient with respect
to y can also be calculated in the same way as iy=—5.4m/m. The hydraulic gradient is a function of x and y

since the variation of the head is no longer linear but quadratic throughout the element. For example the
hydraulic gradients at point X,=2.0, yo=2.0 are ix=19.2m/m and iy=-8.4m/m.
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Problems

Problem 1.1. beam deflection

It is observed that a beam, which lies in the interval 0< x <2m, undergoing flexural distortion has deflections
v1 = 10mm when x = 0 and v2 = 12mm when x = 2m and rotations 61 = 0.01 when x = 0 and 62> = -0.02
when x = 2m where 0 = ov/ox. Assuming that v = a; + a2 X + a3 x® + as X calculate the deflection, rotation
and curvature (6°v/ox?) at x = 1.5m.

(Answer: v=18.25 mm, 6=-0.0057, 62v/0x2=-0.024 m-1)

Problem 1.2. T6 element
For the 6-noded triangular element considered in Example 1.4, assume that the vector of nodal head is:

H = [1.832,34.296,66.76 , 28.896 , —8.968 , —3.568]T

Calculate the hydraulic gradients, ix and iy, at points Xo=2.0, yo=1.5 and x,=2.0, yo=2.0. Compare the results
with those obtained in Example 1.3. Explain a reason for similarity between the results obtained here with
those obtained from a 3-noded element in Example 1.3.

Problem 1.3. Rectangular element

A rectangular element bounded by the lines x = 0, x = 2a, y = 0, y = 2b has nodes at its vertices and the
midpoints of its sides. Assume an appropriate polynomial function for variation of quantities within the
element and show that the shape functions for node 4 (x = 2a, y = b) and node 5 (x = 2a, y = 2b) are:

N = X(@b-y)
4 2
2ab
N = 3xy(x/3a + y/3b —1)
° 4ab

Problem 1.4. Triangular element

A triangular plane element has 6 nodes at the points (xi, yi ); i =1, ..., 6. Assuming the temperature T can
be approximated in the form:

2 2
T =a, +a,X+ azy + a,Xx” + a;Xy + agy

Determine the shape functions for the element in the global coordinate system and in a local coordinate
system which has its origin at the centroid and the X axis parallel to the side joining nodes 1-3 (vector 13
should run in the positive X-direction).

Use these to calculate the temperature at the centroid and the temperature gradients oT/ox, dT/oy and
oTIoX, oTIoY

Your particular values of (xi, yi Ti) i =1, ..., 6 will be given to you. Temperatures are in °c and coordinates
in meters. Make sure you show the units of your answers.
Your solution should have:

(a) Data (xi, yi Ti )
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(b)
(©)
(d)
(€)

Shape function N4 in global coordinates (x,y)

Shape function N4 in local coordinates (X,Y)

The temperature at the centroid of the element

The temperature gradients 0T/ox, 0T/0X at the centroid

22



Chapter 2

MATHEMATICAL FOUNDATION OF FINITE ELEMENT
ANALYSIS

In this Chapter we introduce the key concepts of finite element analysis by considering few one-
dimensional problems. The formulation includes three steps. The first step is the derivation of the governing
equations of the problem along with the identification of its boundary conditions. The second step involves
the conversion of the governing equations into a weak form that allows the formulation of the finite element
theory. In the third step we subdivide the domain of the system into a set of discrete sub-domains that are
called elements, and we define the shape functions in each element. By expressing the seeking solution in
terms of those shape functions, the governing equations are converted into a global matrix equation that is
solved numerically. This is the essence of all finite element methods.

2.1 Governing equations: strong formulation

The first step towards the mathematical modelling of any problem in science or engineering is the derivation
of the differential equations of the quantity that needs to be solved. This quantity can be the displacement
on a building under wind load, the temperature in an electrical circuit, the distribution of pore pressure in a
dam, or the electro-magnetic field produced by an antenna. In most cases these equations can be assembled
using four different components.

1) Kinematic equations, describing the gradient (derivative) of the variable we want to solve. For
example: the gradient of the displacement is the strain, and the gradient of the head is the hydraulic
gradient.

2) Balance equations, which are the mathematical expression of the conservation laws in physics.
Conserved quantities are usually mass, momentum, and energy. For example, for structures in
equilibrium, the conservation of momentum lead to the so-called static equations; The Naiver-
Stokes equations in fluid mechanics involve conservation of mass and momentum.

3) Constitutive equations, which represent the material properties of the system of study. These
properties are usually derived from experimental tests. In structural mechanics the constitutive
model is the stress-strain relation which is given in terms of a stiffness tensor. In transport of heat,
radiation or pollutants the constitutive models consist on transport coefficients, such as permeability
in seepage flow, or conductivity in heat transfer.

4) Boundary conditions, which are given in the boundary of the domain of the problem. These are
required to find a unique solution to the differential equation of the problem.
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Figure 2-1 From left to right: (a) the Leaning Tower of St Moritz; (b) the landslide displacements in the
lower 200 m, (c) the mathematical model to predicting landslide displacement; and (d) free body diagram of
aslide (Puzrin, A. M. & Sterba, 1. (2006). Geotechnique 56, No. 7, 483-489)

To illustrate the derivation of the governing equations, let us consider a simple mathematical model for a
complex engineering problem, as shown in Figure 2-1. This example is a simplification of the powerful
mathematical formulation of Puzrin and coworkers that has capabilities to predict landslides. Our example
is related to a landslide displacement in Switzerland, which have led to the leaning of the St Moritz Tower:
the displacement of the inclined slope is constrained by a rock outcrop along the Via Maistra, as shown in
the Figure 2-1. Geological survey has shown that the deformation occurs above a sliding layer, and it is
constrained by a rock outcrop at the bottom. For simplicity, we assume that the deformation u(x) only
occurs in the direction of the slope. We want to derive the governing equations of “u” using the method of
infinitesimals. First we divide the slope in slides perpendicular to the slope direction. Let u(x) and u(x+Ax)
be the displacement at both side of the slide initially placed at the position x. The width of the slide, Ax, is
assumed to be infinitesimally small, which means, very small.

The kinematic equation is nothing more than the definition of strain:
e U(X+Ax) —u(x)
AX (2.1)
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Where ‘.=” means that the expression is valid when Ax is infinitesimally small. Thus the equation can be
converted into a differential equation using the definition of derivative

ge=— (2.2)
This corresponds to the kinematic equation of the problem.

Now we will construct the balance equation assuming that the system is in equilibrium. Since the problem
Is one-dimensional, the equation of conservation of momentum corresponds to the balance of forces in the
x-direction:

o(x)h —o(x+Ax)h+1Ax — T Ax=0 (2.3)

Where o is the stress acting on the x-direction, also known as earth pressure, T is the shear stress acting on
the sliding layer, and t,=yhsina is the gravity force, and vy is the unit weight of the soil. Eq. (2.3) can be

rearranged as

o(x+tAX)—o(x) _ Ty T

2.4
Ax h @4
Since Ax is infinitesimal, the equation above can be converted into
do__ f(x) (2.5)
dx

where f(x) is the external loads apply to the system that in this case consists of a gravitational load minus
the shear stress at the bottom of the boundary. This equation corresponds to the static equation of the
problem.

We notice that Eq. (2.2) and (2.5) are not sufficient to obtain the displacement profile of the slope. We still
need an equation that relates stress and strain that is precisely the constitutive equation of the problem:

o =Ee (2.6)

E is the Young’s modulus that gives the material property of the soil. It can depend on the position for non-
homogenous soil, or on the stress for non-linear materials. Now we can combine Eq. (2.2), (2.5) and (2.6)
to obtain the governing equation of our problem:

d(-du)_
d—X(Ed—Xj— () 27)

If the soil behaviour is lineal, (i.e. E does not depend on o) this equation can be directly integrated to obtain
the displacement along the landslide. We should not forget that every time we integrate, we obtain an
integration constant, which lead us to an indeterminate solution of our problem. In order to obtain a single
solution we need to complete Eq. (2.7) with the so-called boundary conditions. They correspond to the
condition of the unknown variable u at the boundary of the domain. Since our slope is constrained by a rock
outcrop at the bottom, and free to move at the top, the boundary conditions are

du

u@=0 and —
dX x=L

=0 (2.8)

where L is the length of the landslide. The first condition is called essential or fixed boundary condition. It
states that the displacement at the bottom of the slope is always zero. The latter one is called natural, or
free boundary condition, and it comes after using Eq. (2.2) and (2.6), and the fact that =0 at the top of the
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landslide. If the soil is homogeneous and linear (E= cte) and the top boundary is at the critical state
(t=o,tan(¢), where s =yhcosa is the normal stress ¢ is the angle of friction of the soil), an analytical

solution exists for Eq. (2.7) with boundary condition given by Eqg. (2.8)

sin(a) — cos((x)tan((p))
2E

Note that to obtain this analytical solution we require several strong assumptions, such as one-dimensional
deformation, linear elastic soil, and a sliding layer of zero thickness at the critical state. In practice we
cannot always depend on too strong assumptions. If we relax the assumptions the resulting governing
equation does not have analytical solution. That is where numerical solutions take place. Eq. (2.7) for non-
linear material behaviour could in solved replacing the derivatives by finite differences. This leads to a set
of algebraic equations that can be resolved numerically. This is the essence of the finite differences method
that is useful for systems with simple domains. Yet several real-world problems involve complex domains
and the finite different method become problem dependent. The boundary conditions are much simpler to
plug in finite element modelling. Here is where the power of the finite element modelling appears, as it
provides a unified framework for solving the governing equation of a wide range of problems for any kind
of domains and boundary conditions. We will present below the key concepts of finite element modelling
which will allow us to understand the general idea of this method.

u(x)= ( X(2L —X) (2.9)

2.2 \Weak formulation

We are about to introduce the weak formulation of the governing equations. In structural mechanics, this
formulation is equivalent to the principle of virtual work. This principle plays a very vital role in structural
analysis and in the finite element formulation of partial differential equations.

We want to solve the differentialequation plus boundary conditions:

d (gdu)__ o B
d_x(Ed_xj_ f(x), u(0)=0, ax|_ 0 (2.10)

The solution above requires having a second derivative, so that it need to be continuous and with no corners.
We want to relax this assumption, and find solution that being continuous can have corners, i. e.
discontinuities in the derivative. Let us define the test function u(x), as continuous and piece-wise
differentiable, satisfying the essential boundary conditions of the governing equation. The meaning of this
test function may appear obscure at this point of the book, but it will be clarified when we arrive to the
weak formulation. Multiplying the above differential equation by the test function and integrating over the
whole domain, the equation above can be written as

L
d(_du .
j —(E—j f(x) U (x)dx =0 (2.11)
oL dx dx

Now we want to get rid of the second derivatives to allow continuous function with ‘corners’ to satisfy the

new equation. With this aim we will “integrate by parts” the first term of the above equation. First, we
recall the ‘product rule’ of differential calculus

i(vw):ywwd—W (2.12)
dx dx dx
Using v=Edu/dx and w=u" we obtain the following identity
G -) A fgdu) . gdudy (2.13)
dx\ dx dx\ dx dx dx
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this is rewritten as

i(Ed_u] *:i(Ed_u *j_Ed_Udi (2.14)
dx\ dx dx\ dx dx dx
Replacing this equation into Eq. (2.11) we get
L
d(_du J du du”
— E——+fxu X) dx =0 2.1
[l (ESuwo)-e % o] 219
Integrating the first term
L
d” o j{Ed—”di-f( u (x)}dx 0 (2.16)
0

and using the boundary condition given in Eq (2.10) on u and u” we obtain the so-called weak formulation
of the problem

| {Ed—Udi—f( )\ (x)}dx 0 (2.17)

You may be ask asking yourself right now, what does it mean? Why it is weak? Why is it important? It is
called weak form because the conditions of the seeking solution u(x) are weaker than in the Eq. (2.10): In
the weak form, our solution does not need to have continuous second derivative. We only require a solution
that is continuous and piece-wise differentiable, so that we can seek piece-wise linear solutions. The weak
form is also of great importance in structural mechanics because it corresponds to an important principle in
mechanics: To show that, using Eqgs. (2.2) and (2.6) we can write Eq. (2.17) as

JL-|:GS* —fu’ ]dx =0 (2.18)

The first term is precisely the energy done on the system by internal forces after a virtual displacement
u”(x) consistent to the essential boundary condition. The second term is the energy given by external forces
due to this virtual displacement. In other words, we have found that the weak formulation corresponds to
the well-known principle of virtual work. This principle states that the equilibrium solution of the system
u(x) is such that the internal work equals the external virtual work for any displacement consistent with the
boundary conditions.

2.3 Finite Difference Method

Until now we have introduced the strong form and the weak formulation of the governing equations. The
strong form can be used to solve numerically the equation using the method of finite differences. On the
other side, the weak form is the basis of the finite element formulation as we will see in the next section.

In the “finite difference” method, a solution of the basic governing differential equations is sought at
discrete points within the domain investigated. The domain is divided in segments, (or rectangles in 2D).
Then the derivative at the nodes of the grid is approximated by a finite difference

du _ u(x+Ax)—u(x)
dx Ax
The second derivative can be also approximated by a finite difference expression

(2.19)
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du
d’u _ dx|,
dx?’ Ax

du

dx

om (2.20)

Using both equations above, we obtain a finite difference expression for the second derivative

d®u _ U(x+AX) — 2u(x)+u(x — Ax)

2.21
dx? Ax? (22D)
We can replace the above equation into Eq. (2.7) to obtain
2
—U(X+AX)+2u(x) — u(x — Ax) = F(), F(x)=AXTf()X) (2.22)
X

Lets assume, for example that the domain is the interval [0, L] and it is divided into four subintervals with
nodes x,=0, X, =Ax, x,=2Ax, X,=3Ax, x,=4Ax=L. If we calculate Eq. (2.22) in each node the following
equations are obtained:

X=Ax = -—u,f2u,-u,=FE

X=2Ax = —u,+2u,-u, =F, (2.23)
x=3Ax = -u,+2u,—u,=F, '

X=4Ax = -—u,+2u,-u,=F,

Then the governing equations are converted into algebraical equations, which are completed using the
boundary conditions. Thus a pointwise numerical approximation is obtained. The beauty of this method is
there is that the derivation of the algebraical equation is straightforward. Unfortunately, this feature often
cannot outweigh its main disadvantage, namely that the method is not very tolerant of irregular boundary
conditions as shown in Figure 2-2 for 2D grids. The other problem is that the conversion of the boundary
conditions into algebraical equations is not always easy and it needs special treatment in each case.

e aYA\ "
AVAVAVAVAD, |
VAN

P

(a) s

Figure 2-2 Discretization of a turbine blade using (a) finite difference method and (b) finite element method
[after Hubner, 1942]
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2.4 Finite Element Method

A more flexible technique to handle boundary condition is the “finite element method”. This method was
born from the family of spectral methods, in which the solution is sought as a linear combination of well-
known, elementary function —the Fourier analysis is a sister of the finite element method, but the later one
proved to be much more computationally efficient.

Similar to the finite difference method, the domain of the problem is discretised into smaller sub-regions
that are commonly known as finite elements, see Figure 2-2b. Then we define a shape function sitting in
each node, and vanishing in all elements that do not contain the node. Untimately the shape function will
allow us to interpolate the nodal displacements at any point between the nodes. The simplest option is to
assume that each shape function is what we call a ‘hat function’, i.e. a function that is one in the node and
decreases linearly to zero in the neighbour nodes. Then we seek a solution as a linear combination of the
shape functions

u(x)=> u;N;(x) (2.24)

i=1
where the sum goes over all “degrees of freedom” (dof) of the system. As a final result a piecewise linear
approximation to the governing equation is arrived at, whose solution is obtained by finding the coefficients
u,. Very complex domains can be modelled with relative ease (Figure 2-2b) using triangles as finite

elements. However, we should notice that if we plug Eq. (2.24) into the governing equation Eqg. (2.10) and
immediate problem is encounter: our shape functions has corners at the node, and we try to differenciate
them twice, our equation will produce infinites at each nodes that rules out a solution in the form of Eq.
(2.24).

Historically many mathematicians encountered the same difficulty until the brilliant idea of Galerkin
(Russian Mathematician and Engineer) came. The idea of Galerkin was to use Eq. (2.24) to find an
approximate solution of the weak form of the governing equations instead. We will introduce the Galerkin
method by formulating the finite element method in one dimension. The basic procedure is essentially the
same for two and three-dimensional problems:

1. Decompose the domain into a set finite elements.
2. Define a set of shape functions, each one sitting in what are called nodes of the finite elements.
3. Unknown field variable u(x) is expressed as a linear combination of the shape functions, and

4. The governing equation is transformed into a matrix equation that is solved to obtain coefficient of
the linear combination.

Domain Discretisation

The domain of the slope problem is the interval [0, L]. Let us divide the interval into four elements (e, ez,
es, e4). These elements will be joined by five nodes (xo, X1, X2, X3, X4). We seek and approximate solutions
at the nodes given by ui=u(xi), i=0,1,2,3m4. The natural question is how many elements we need to use.
The general rule is that as more elements we use more accurate will be the solution, but more calculations
need to be done. Yet in the practice we need to use smaller element in those part of the domain where we
expect the solution will change more abruptly. In analysis of structures this happens near to the holes or the
interfaces where different bodies interact.
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Figure 2-3 Left: hat shape function in finite element analysis Right: derivatives of the hat functions

Global shape function

After discretisation we seek for a solution of the Eg. (2.17) on the domain. The main idea is to sit a shape
function in each one of the nodes, (Figure 2-3) and then express the virtual displacement as a linear
combination of them. Each shape function will account for deformation at one node, and the total
deformation is expressed as a linear combination of the shape functions. In particular, Eq. (2.17) will be
valid for u"(x)=Ni(x) (i=1,2,3,4). Thus Eq. (2.17) is written as:

I(E du dN,

20 N O0O))dx=0 where i1=1,2,3,4 .
i dn (X)) (2.25)

0

Linear combination

The function u(x) is expressed also as a combination of the shape functions:
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4

U(X)=u,N, (%) + u,N, () +UgNg () + u,N, (X) =D uiN; () (2.26)

i=1

If we use shape function as the hat shown in Figure 2-3, it is easy to show that u; is the deformation at the
ith
-node.

Global matrix equation
Replacing Eqg. (2.26) into Eq. (2.25) we obtain a global matrix equation

> K,u;=F (2.27)
dN, dN;
K;=[E=—t—Ldx .
JE5 @29
L
F=[f0) N, (x)dx (2.29)
0

The FEM solution consists of calculating the elements of the ‘stiffness matrix’ Eq. (2.28) and the load
vector in Egs. (2.29). Expresed in matrix form, Eq. (2.27) becomes

ML L L L l L
[E=—= dN, N, x [E AN, N, oy [E AN, N5 [E NN | 7 JfOO N, (x) dx
oy dx dx > dxdx > dx dx 5 dx dx ! 5
L L L L L
jEdN an, jE dN, dN; 4 jE AN, dN; o j dn, dN, u, jf(x) N, (x)dx
o dx dx y  dx dx ,  dx dx X dx K
L L L L L
J. dN, dN IE dN, dN, IE dN, dN, I dN, dN, u, J-f(x) N, () dx
o dx dx ,  dx dx ,  Ox dx y  dx dx 0
L L L L L
J~EdN dN, IE dN, dN, j dN, dN, .[ dN, dN, u, | _[f(X) N, (x)dx
v dx dx oy dxdx dx dx dx dx | K i

A simple calculation of integrals using the derivatives of the shape functions plotted in Figure 2-3, should
show that if E(x)=E, and f(x)=f,, the global matrix equation is given by

2 -1 0 O0|u 1
5 -1 2 -1 0y, :foAx . .. Ku=F (2.30)
Ax| 0 -1 2 -1||u; 1

0 0 -1 1|u, 1/2

We notice that our smart selection of the shape function concentrated at the nodes allow us to obtain a
banded matrix with zeros outside of the band. This simplifies the calculation of the inverse. The finite
element programs have a solver that is in charge of inverting the stiffness matrix to find the solution at the
nodes as

u=K'F (2.31)
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Finite element solver

Most of the computational work involved in a finite element software lies in the inversion of the stiffness
matrix. The part of the program that does this inversion is called solver. The first steps that the solver needs
to check is whether the determinant of the matrix is different from zero. If it vanished the matrix is singular,
which means that it cannot be inverted. In other words, we do not have a unique solution of the problem,
or we may not have any. A singular matrix appears when the boundary conditions are not ‘well posed’.
This is the case for example, when the boundary conditions are free at both ends of the domain. Singular
matrices appear also when the material properties of the materials such as Young modulus of thickness of
the materials are entered with zero values. This is a common mistake of beginners.

The second problem that may be encounter by the solver in problems with large matrices is that the
computer needs too much time to invert the matrix. This usually happen when the elements are not properly
indexed, leading to sparse matrices. Ideally, we want that the elements of the stiffness matrix vanish above
a certain distance from the diagonal that is called bandwidth.

A typical finite element program consists of three basic units: pre-processor, processor and post-processor.
In the pre-processor the geometry of the problem, the boundary conditions and material parameters are
entered into the program. The processor generates the elements, assembles the stiffness matrix, and inverts
it using the solver. The last component of the program is the post-processor that computes the solution and
its derivatives and print or plot the results. In this book we will focus on the theoretical aspects of the
implementation of the finite elements within the processor. We focus not only on structural problems, but
also in non-structural cases such as seepage analysis and thermal conduction problems. We will focus the
so-called static solvers that give solutions of static problems. However, you shall bear in mind that there
are solvers for many situations, such as buckling analysis and dynamic systems.

2.5 Variational principle: minimal form

The principle of virtual work can be derived from a variational formulation. This formulation leads to a
wide range of numerical methods to find equilibrium configuration of complex systems, from the the
configuration of DNA molecules to the equilibrium of complex civil engineering structures. One of these
Is the finite element method that we have derived from the virtual work principle.

Here we present an alternative to derive the weak formulation which is based on energetic principles. The
method calculates the energy E(u) of the system in a configuration given by the displacement function u(x).
Then the equilibrium of the solution is assumed to be that one that minimizes the energy. This formulation
is useful when we are interested in the equilibrium of the system, which is the case of most structural
analysis problem. If we want to investigate the transient dynamics, we need other methods. The variational
formulation defines the ‘energy’ as a ‘functional’ —it means, a function whose argument is a function, and
whose value is a real number, which in this case represents the energy:

E(u)= j (%E[g—ﬂ + fu)dx (2.32)

We seek for the function u(x) that minimizes the energy. This can be done by using the ‘variational
derivative’.

E(u+eu’) —E(u) _

E'(u). = 0 (2.33)

Where u“(x) is a ‘test function’ that satisfies the essential boundary conditions of the problem.
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Replacing Eq. (2.32) in Eq. (2.33) we obtain:
dud
j(E—“i—f u)dx =0 (2.34)

This corresponds to the weak form. We can also derive the strong formulation for Eq. (2.34). By integrating
this equation by parts,

L

(2.35)

0

L
Ozj(Ed—UdL—f =— j E—u +fu’ dx+u*(x)d—u
dx dx . dx

Using the boundary condition, it leads to

d du
! { dx[ dx}f(x)} (x)dx =0 (2.36)

Since this equation is valid for any virtual displacement, we can assume that the integrand vanish in all
points

d(_du
+

dx( dxj f(x)=0 (2.37)
This corresponds to the strong formulation. We can conclude that the governing equation of a scientific or
engineering problem can be written in three different forms: the strong form that is used in the finite
differences method to achieve a point-wise approximation; the weak form that allows the finite element
formulation and a piecewise linear approximation; and the minimal form, which allow numerical solutions
using a wide range of variational methods that are not covered in this book.
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Problems

Problem 2.1. Finite different solution

This question is related to the governing equation of the constrained landslide problem
d?u du
E.—=—f u0=0 and —| =0
®dxz ° © dx|,.,
Where Eo is the Young modulus of the soils, fo is the external forces per unit of length, and u(x) is the
displacement we want to obtain. Find the analytical solution of this equation. Here we will compare this
result with the numerical solutions from the finite difference method and the finite element method.
Divide the space domain of the landslide in four equally spaced intervals with nodes
X, =0, X, =AX, X,=2AX, ...,X,=L
Show that the finite different method (FDM) matrix equation of the governing equation is given by

2 -1 0 01y 1
-1 2 -1 0|lu,|_fAx?|1

0 -1 2 -1|lu,| E, |1
0 0 -1 1]u, 1

Solve this equation by inverting the matrix and find the displacement at the nodes.

Problem 2.2. Finite element solution

For the differential equation in Problem 2.1, construct the global matrix equation using the finite element
method (FEM). You must do the following

1) Calculate the integrals for K11, K12, K13, Kas, F1, and Fa.
2) Using these calculations to show that the matrix equation is given by

2 -1 0 0]y 1
-1 2 -1 0 |lu,|_fax?| 1
0 -1 2 -1||u,| E, |1
0 0 -1 1]u, 1/2

Invert the matrix to solve the displacement of the nodes.

Problem 2.3. Numerical errors

Compare the numerical solutions of both FDM and FEM with the analytical solution. What is the numerical
error of the solution in each case? How does the numerical error change if the number of elements is
duplicated? The numerical error is the difference between the exact solution and the numerical solution.

Hint: to compare the numerical solutions, you can work with dimensionless variables by assuming that
f,L*/E,=1 and L=1
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Problem 2.4. Settlement of soils

A soil layer of depth H [m] over a rock bed has a uniform unit weight y [kN/m®] and a Young modulus E(x)
[KN/m?] that varies with depth, see figure. A uniform load P [kN/m?] is applied on the surface. The soil
deforms due to the combined action of its weight and the surface load. The deformation due to the surface

L

I 1
| |
: Soil T ECO
| layer v :
I H I
X | :
L>>H I

|

|

0 !
000 i T

1) Derive the kinematic equation of the problem

2) Write down the constitutive equation of the problem

3) Derive the balance equation of the problem, Assume that settlement and compression stresses are
positive.

4) Derive the governing equations along with the boundary conditions.

5) Obtain the analytical solution for the soil deformation, settlement, total strain, and total stress, in the
case of homogeneous soil E(x) = Eo.

Problem 2.5. Steel bar with variable area

A steel bar (E=200 GPa) is fixed to a wall as shown the figure. The bar is pulled by a horizontal force
P=1000 N applied at the right. The area changes linearly from 0.01 m? to 0.0064 m?. The length of the bar
iIs Im. This problem is about finding the horizontal displacement along the bar. It is assumed that
displacements in the right direction are positive.

L

1) Derive the governing equations of the deformation of the bar.
2) Derive the weak form of the governing equations.

3) Find the global matrix equation with three linear elements.

4) Find the finite element solution of the problem

5) Derive the analytical solution for the problem.
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Problem 2.6. Analytical modelling of constrained landslides
The governing equation for the displacement of the landslide in Section 2.1 is

E[Ed—“jz—rg_T W0)=0 and M
dx\ dx h dx|,.,

=0

Where E is the Young modulus of the soil, t the shear stress acting on the sliding layer; h the depth of the
sliding layer; and t,=yhsina the gravity force; y is the unit weight of the soil and o is the angle of the slope.

1) Show that if the soil is homogeneous and linear (E= cte) and the soil at the sliding surface is at the critical
state (t=yhcos(a)tan(¢), Where ¢ is the angle of friction of the soil), an analytical solution exists for the

boundary condition.

U, (X)=y(sin(a)-tanpcos(a))x(x-2L)
2) Use the Matlab function spdiags to construct the stiffness matrix for 10, 100 and 1000 elements in both
FEM and FDM formulation. Solve numerically the global matrix equation. Compare the analytical solution
to the numerical solutions, and determine the error of the approximation as a function of the number of
elements.

3) Assuming a viscoelastic constitutive relation between earth pressure and the strain

ou
=Eetne &=—
p=ketn P

show that the displacement is a the following function of position and time
u(x.t)=u, (x)(1-e=")

4) Sketch the displacement versus time of the landslide, and earth pressure p along the landslide. Discuss
whether the landslide will remain stable in the future.
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Chapter 3
FINITE ELEMENT CONCEPT

In the previous Chapter the basic concept of the finite element formulation was introduced, and the stiffness
matrix was derived using global shape functions. Although the stiffness matrices of a few more element
types may be obtained using similar procedures, for other types of finite elements, such as continuum
triangular or rectangular elements, the derivation is not straightforward. Therefore, it is necessary to
develop a general procedure that can be used for derivation of the stiffness matrices of all element types.
The general method consists of constructing the stiffness matrix of individual elements, and then assembly
them into a global stiffness matrix of the complete structure.

The aim of this chapter is to introduce this general formulation of the finite element method. The procedure
will be used to form the stiffness matrix of two different element types, bar element and a flexural beams
element.

3.1 The principle of virtual work

We recall the principle of virtual work for a single element of the structure. The principle of virtual work
states that during any virtual displacement imposed on the boundary of an element, the total work done by

the external loads Wex: must be equal to the total internal work done Wint by the internal stresses 6(X) .
Wint =Woxt
W, = J-ve g (x)o(x)dV (3.1)
W, = j . u” ()Ff(x)dV

where f(x) are the external load, and £*(x) is the virtual strains produced by the virtual displacementu”(x).

The integral goes over the volume of the element Ve = AL, where A is the cross section area and L the
length of the element.

The virtual work principle can be written in matrix form as:

jv £ (x)o(x)dV= jv u T ()f(x)dV (3.2)

This notation is convenient since stress and strains are generally vector quantities that will be defined in 0.
He will use this expression since it is more convenient to derive the finite element formulation.

3.2 General procedure in Finite Element Analysis

Most finite element computations in numerical analysis comprise the following steps that will be explained in
detail along this textbook:

1. Chose a suitable coordinate system. While for many of the geometries a Cartesian coordinate is suitable, a
cylindrical coordinate system may be used for problems with axial symmetry.
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2. Divide the geometry of the problem into a number of finite elements. Different types of elements may be
used to represent differences in physical properties. In structural mechanics, these can be beams, cables,
plates, bricks, etc.

Use a suitable node numbering system for the elements of the structure.

Derive the element matrix equations for all finite elements using the principle of virtual work (or the
principle of minimum potential energy). These equations are typically in the form of:

k.u, =T (3.3)

where Ke is the element stiffness matrix, ue is the vector of element nodal displacements, and f, is the
vector of element nodal forces.

5. Assemble the global stiffness matrix for the complete structure from the stiffness matrices of the individual
finite elements, and the global force vector to form the element nodal forces:

Ku=F (3.4)

where K :ZKe is the global stiffness matrix, u is the vector of global nodal displacements, and
F= ZFe is the vector of global nodal forces. The matrices K and F,are ‘inflated” versions of ke and

f,, as we learn in the next chapter.

6. Apply boundary conditions by eliminating equations related to nodes with zero displacements. The method
will be explained in the next chapter.

7. Solve the global stiffness equations to obtain the unknown nodal displacements:
u=K*'F (3.5
8. Compute the relevant physical quantities in all elements: stresses, strains, curvature and moments.

The calculation of the element stiffness matrix, ke, is an important step in the finite element computations
and therefore is dealt with in detail in the next section.

3.3 Element stiffness matrix of the one-dimensional bar element

A general procedure is presented here that can be used for derivation of the stiffness matrix of various finite
elements. The aim is to relate the nodal loads to the nodal displacements, and thereby define the element
stiffness matrix.

Different types of elements have different numbers of nodes and different numbers of degrees of freedom
per node. Therefore, the size of the stiffness matrix is generally different for different element types. In
most structural analyses the term degree of freedom may be regarded as the different modes of displacement
at each node. However, in general, the term "degree-of-freedom” is applied to any nodal quantity such as
displacement, rotation, temperature, hydraulic head, etc. If the number of nodes in the chosen finite element
is nne and the number of degree of freedom per node is dof, then the total degrees of freedom for the element
IS Ndof = Nne % dot. The size of the element displacement vector, ue, and the element force vector, fe, is equal
to ndor and the size of the element stiffness matrix, Ke, is equal to ngof x Ndor. The element stiffness equations
are defined by:

ku, =f (3.6)

e~e e

The specific case considered here is a two-node bar element shown in Figure 3-2 Similar to the element of
the constrained landslide, we assume that this element can only carry axial loads. The rotation and the
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deflection normal to the element axis are assumed to be zero. For this element nne=2, dof=1, Ndor=2, and
therefore the size of the stiffness matrix is 2x2. The linear shape functions for this element are plotted in
Figure 3-2.

N()A
1 2
ui, pr 1 2 Uz, p2 1
X1 X2 N1 N2
0_))( ]
0 X1 s x>

Figure 3-1 Two-node bar element )
Figure 3-2 Two-node bar element

The matrix equation of this element can be calculated in the same way then in Chapter 2

dN, dN dN, dN
T TN gy (B 2dv
-([ dx dx -[ t _ Py
dN, dN, o, FodN, AN B
E—=2 2dV u 3.7
j Lo [EE )P, (3.7)

0

Here the dV=Adx, where A is the area of the bar. If the young modulus and the body forces are uniform,

Eq. (3.7) becomes
EA| 1 -1hu | _ip
L|-1 1]y, | |p, (38)

This is the element matrix equation of the one-dimensional bar problem.

3.4 Calculation of the stiffness matrix of a two-dimensional bar element

The aim of this section is to present an approach to the construction of the element stiffness matrices of
two-dimensional structures through transformation of coordinates. A structural frame usually consists of
members set at various angles to one another. Therefore, it is more convenient to set up the stiffness matrix
in terms of the local member coordinates and then transform each of the local coordinate system to the
global coordinate system adopted for the complete structure.

A two-dimensional bar element which is inclined at an angle 0 to the global system is shown in Figure 3-3.
Axes X and Y refer to the local member system and axes x and y to the global coordinate system. In a
framed structure each end of the bar could be displaced in both directions. The displacements U and V, u
and v, and the forces P and Q, p and q are related to the local and the global systems, as shown in Figure
3-3.
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Figure 3-3 Two-dimensional bar element

We start with:

EEN b R M

where Ea and E; are the axial and lateral Young modulus. In the special case of a truss-element, E;=0 that
reflects the fact that displacement of the nodes does not lead to shear forces. More precisely, the nodal
forces are always parallel to the bar element so that Q1=Q>=0

We expand the matrices

10 -1 0][y,] [P 0 0 0 O]y, 0
V, -1 V,
AE,| 0 0 0 0|V, |_|O AE [0 10 -1V, | |Q (3.10)
L|-10 10/|U,| |P, L{0 00 OU,| |O
0 0 0V, 0 0 -1 0 1/V,| |Q,
And then we sum both equations
E, 0 -E, 0]u, P,
Al 0B OBV IR (3.11)
LI-E, 0 E, O0||U,| |P,
0 -E, 0 E|V,] |Q,
For the special case of a truss element E.=E and E;=0, so that the equation above reduces to
10 -1 0]y, P,
V,
AE| 00 0 0V 1Q (3.12)
L|-1 0 10/[U,| |P,
00 0 O0fV, Q,

The local and global systems of forces at each node can be related by Eq. (B.3) in Appendix B:
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Pt o]

Thus the relationship between the applied forces in the local and global systems is:

P, ] [ cos(6) sin(0) 0 0l p,
Q, | |-sin(8) cos(6) 0 01| q,
P, | 0 0 cos(0) sin(0) || p, (3.14)
Q] | 0 0 -sin(6) cos(0)] d,
or simply:
F=Tf (3.15)

where F and f are the force vectors in the local and global systems, respectively.
A similar relationship also exists between the two sets of displacements in the local and global systems:

A=Tu (3.16)

A and u are the displacement vectors in the local and global systems
The stiffness matrix for a member in the global system can now be established. The basic force-
displacement relationship for the bar element, given in Eq. (3.12), states that:

F=K,A (3.17)
K¢ refers to the element stiffness matrix in the local coordinate system. Substituting F and A from Eq. (3.15)
and Eq. (3.16) into Eq. (3.17) results in:
Tf = K, T'u (3.18)
Both sides of the above equation are multiplied by T.
TTf = TK.T'u (3.19)
One useful property of the T matrix is that its transpose is equal to its inverse, i.e,
T =T, TT=TT'=1 (3.20)
Therefore;
f = TK,T'u = k.u (3.21)
whereby k¢ is the stiffness matrix of the element in the global system.

k, = TK T (3.22)

e

It can be seen that the global stiffness matrix for a member, ke, can be obtained from the stiffness matrix

of the member in the local member coordinate system. So that the stiffness matrix of the bar elements can
be written in the global system as shown below.

2 2

c
_AE| ¢ s —¢s s
L |- —cs ¢* cs

—cs -s* ¢s §?

cs —C —Cs

2

k c=cos(0),s=sin(0) (3.23)
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Eqg. (3.12) can now be written in the global system:

2 2

c cs —Cc° —cs||u, P:
AE| cs s? —cs -s°||lv _| % (3.2)
L|{-c® —cs c¢* «cs|lu, P,

—-cs -s° ¢ s°|v, a,

In the assembly of the global stiffness matrix for a structure, an important point is that the stiffness matrix
of any member, established in local coordinates, must be transformed into the global coordinate system
before commencing the assembly process.

3.5 Calculation of the stiffness matrix of flexural beam elements

The procedure explained in Section 3.4 is extended here to calculate the stiffness matrix of a flexural beam
element. Beam elements are the basic members of rigid jointed frames. The derivation of the stiffness
matrix is presented in Section 8.1. here we just show the results of the calculation.

The beam element considered here has two nodes, a uniform cross-section A, and is loaded by forces and
moments at each node as shown in Figure 3-4. Each node has to degrees of freedom, the deflection v and
v2 and the rotation of the cross section due to the deflection 61 and 6,. The beam is assumed to be slender
so that the effects of shear deformations can be ignored. The effects of axial forces and deformations are
also ignored here. The sign conventions for the moments M1 and M> and the shear forces q: and > are
shown in Figure 3-4.

V1, O1 V2, Q2

f ‘ :91, Mj_ ! ‘ \92’ M2
y T
1 L 2
X - —

Figure 3-4 Two-node beam element

The calcalculation of the element stiffnesss matrix requires three geometric parameters the length of the
beam L, the cross-section area A, and its second moment I. The material parameter is the Young Modulus
E. The element matrix equation of the beam is given by

C12ElI 6Bl 1261 6Bl [V.] [Q,]
E 2 2
6EI  4El  6EI 26l || 6| |M,
2 2
Al b L L - (3.25)
12E1  6EI 12EI  6EI||V,| |Q,
T ET
6EI  2EI  6EI 4El |0, | |M,
L2 L L2 L 4 | [ |
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3.6 Two-dimensional flexural members

Flexural frames are structures with rigid jointed members that resist loads primarily by flexural action. The
stiffness relation is first derived in a local coordinate system, defined by the member axes, and is then
transformed to the global system (Figure 3-5). The stress resultants at any point of such members consist
of a moment, a transverse shear force, and an axial force. Thus the number of degrees-of-freedom at each
node is dor=3. The total degrees-of-freedom for the two-noded flexural element shown in Figure 3-5 is
therefore ngof=6. The size of the element stiffness matrix is 6x6.

Vs, Q2

Vi, Q1
01, M1
Y,
v, Uy, P1
q
H

Figure 3-5 Two-node beam element

The stiffness equation of a beam element in its local coordinate system is given by Eq. (3.25). This equation
can be expanded to include the effects of axial forces, P1and P:

71 U P
EA o, _EA YR
L L
12El 6El 12EI oEl V1 Q1
o = = Y 7= T
o BEl 4Bl BEl 2Bl ||0 | |M,
L2 L L2 L (3.26)
EA . EA o, (|| |P
L L
e L A
O @ E _E E 62 M2
B L2 L [ 2 L

For an arbitrarily oriented beam element, inclined at an angle 0, it is necessary to express the stiffness
matrix in the global coordinate system. The local and global systems of forces and displacements at each
node can be related by:

P cos(6) sin(0) 0 P
Q [=|-sin(6) cos(0) 0 q (3.27)
M 0 0 1 M
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U cos(6) sin(0) 0 u
V= —Sin(e) cos(@) 0 % (3.28)
0 0 0 1 0
Therefore, local and global nodal forces and displacements are related by:
F =T'f A, =T u, (3.29)
where
[ cos(6) -sin(6) 0 0 0 0 ]
sin(6)  cos(0) 0 0 0 0
T 0 0 1 0 0 0
|0 0 0 cos(9) -sin(6) 0 (3.30)
0 0 0 sin(6)  cos(0) 0
0 0 0 0 0 1]
The element stiffness matrix in the global coordinate system can be expressed as:
k, =TK, T" (3.31)
or:
_(EA , 12EI 2j (EA 125|) 6El (EA , 12El 2) (EA 12EI 6El
—C+——s _—— sc -— —-| —cC"+——s - —- -—-=5
L L L U L2 L L L L2
(EA 12EIJ [EA , 12EI zj 6EI (EA 12EI] (EA , 12EI zj 6EI
—_— sC —s"+ c —c - =—- sc  —|—s°+ c —
L U L L L2 L U L L L2
6l 6E1 4E1 6E! 6l & | (332
- L2 L2 L L2 L
. [EA , 12El zj (EA 12Elj 6EI (EA , 12EI Zj [EA 12Elj 6EI
—| —c°+ ] —| ——-=——sc — —cCc'+ ] ——-"——sC —
L L L U L? L L L L?
[EA 12EI) (EA . 12El zj 6EI [EA 12Elj (EA , 12EI zj 6EI
- —- s¢ —-|—s"+——c¢ —— —_—- sC —Ss°+——cC —
L 0 L L L2 L U L : L2
_6El BE1 2 6El _6El 41
i L2 L2 L L2 L

Note that in this case, the force vector at any point comprises stress resultants at the point consisting of a
moment, a transverse force and an axial force. The displacement vector at any point also comprises a
curvature, a transverse displacement and an axial displacement. For this reason, these vectors are often
called the generalised force vector and generalised displacement vector, respectively.
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Chapter 4
BAR AND BEAM FRAMES

The behaviour of frames structures consisting of bar and beam elements is considered in this chapter.
Simple forms of these structures may be analysed using a variety of manual techniques. However, a
complex structure like the frame structure in Figure 4-1 consisting of many thousands of these elements, or
a structure combining these elements with continuum elements as shown in Figure 4-2, is best suited to
analysis by the finite element method.

The stiffness of the complete structure can be constructed using the stiffness of each individual element.
This matrix represents the relationship between the forces applied to any particular node to the displacement
of all the nodes in the structure. But since one node may be shared by different elements, the assembly of the
global stiffness matrix is not straighforward. In this chapter we will deal with this important step of the finite
element analysis: given the stiffness matrices of all individual elements in a structure. How can these
matrices be combined to form the stiffness matrix of the complete structure?

Figure 4-1 Framed structure Figure 4-2 Continuum structure and finite element

4.1 Assembly of global stiffness matrix

In this section we will learn how to assemble the global matrices from the corresponding element matrices.
For a complex structure consisting of beams and columns and braces (Figure 4-1), the global stiffness
matrix defines the relationship between the load applied at any point to the deformation of any other point
in the structure. (The distinct points in a structure where the loads are applied or where the displacements
are required are termed “nodes”). The stiffness matrix of individual element is given by

f, =k, u, , e=l..,n (4.1)
In the first step of the assembly, the element matrices fe and ke of size n x n are expanded to Fe and Ke of

size Ndof X Ndof SO that the equation above results in
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F, = KU (4.2)

The expanded stiffness matrices have the dimensions ndor X Ndof Of the global matrix equations. The column
vector u contains the degrees of freedom of the whole structure. The column vector Fe and the matrix Ke is
completed with zeros for all nodes that do not belong to the element.

In the second step of the assembly, the global matrix equation is created by summing all the expanded
equations, leading to

F=Ku
K=>K, (4.3)
e=1

F:Zn: F
e=1

4.2 Global matrix equation of a two-bar structure

First we present the procedure for the assembly of the stiffness matrix of a simple structure consisting of
two bar elements. Consider the two-bar-structure in Figure 4-3. The structure has 3 nodes, each of which
may deform and to each of which a force may be applied. Therefore, the force vector or displacement vector
has 3 components and the stiffness matrix is of order 3x3.

P, k11 k12 k13 u,
P, |= k21 kzz k23 u, (4-4)
Ps k31 k32 k33 Us

P Uy ﬁpz’ U2 Ps, Us
- X +
—_—

Figure 4-3 Two-bar-structure

By examining the stiffness matrix of the structure more closely, it may be visualized that the stiffness matrix
of the complete structure can be formed by the stiffness matrices of the individual elements. The stiffness
matrices, the load vectors and the displacement vectors of each of the elements can be written as:

Elementa: 0| = R Y
l _pg_ ) __ka ka _u2_ (4.5)
5] [k k[,
Elementb: pﬁ = " b} 2 (4.6)
| P; __kb K, | Us |

Although the two stiffness matrices are of the same order they may not be added directly since they relate
to different sets of nodes. However, by adding rows and columns of zeros, both of the element stiffness
matrices may be expanded in such a way that each row and column relates to the three nodes:
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Elementa: p5 |=| -k . 0llu, 4.7)

0] [o o 0 [y
Element b: p=|0 k, k| u, (4.8)
p3| [0 —ky Ky J[Us]

The above matrices can now be added together to assemble the stiffness matrix of the complete structure.

Py pi ka _ka 0 Uy
Two-bar structure: p, |=| pi+pd |=| -k, k,+k, -k, | u, (4.9)
pa) | gt 0k, Kk ||Us

The simple procedure for the assembly of the global stiffness matrix for the two-bar-element structure can be
extended for more complex structures.

4.3 Restrained global stiffness matrix of a simple one-dimensional structure

We will present here a simple example of how to construct the global matrix equation of the Section 2.4
from the element matrix equations. We start expanding and summing the element matrix equation and then
we apply the pertinent boundary conditions.

Consider an example similar to the one in Secion 2.4. The structure consists on an elastic material with a
fixed displacement U(0)=U0 at x=0 and a force P at x=L. The system is subjected to a uniform force per
unit of volume f. The domain of the problem was divided in four elements as

[ Xo=0 X1=Ax X2=2Ax X3=3Ax Xa=L
Uo e Ui e, uz e3 us e4 Ua P

Figure 4-4 One-dimensional structure divided in four elements

The element matrix equations are:

EA[ 1 —1u,] faxalL
Ax|-1 1fju | 2 |1

M PRy
P 1= 169 (410)

i+l
Were p, is the load acting on the i-element due to the j-element. We expand the matrix in each one of the
elements
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1 -1 0 0 O]y, 1] [P, 0 0 0 0 0]y, 01 [0]
Lt oo0ooful o Ji] Rl 001 0 0fu| 1] [P,
2o 0 00 ofu =22 ol+| 0| Lo -1 1 0 of|u,|= 28 14P,
Ax 2 AX 2

0 0 00 Ofu, ol |o 0 0 0 0 Ofu, 0| | o

(0 0 0 0 0flu, o] | o] 0 0 0 0 olu,| 0] | 0|

00 0 0 0| u,] 0] [ 0] 000 0 07 u,] 0] [ 0]
A[00 0 0 offu | Jo| |0 A[000 0 ojul  jol |0
Ao o 1 -1 ollu, =281 ]+r,| Lo o o0 0o olu =220+ 0
AX 2 ' AX 2

00 -1 1 0fu, 1| |p,, 000 1 -1fu, 1| |P,,

00 0 0 ou,] ol | o 000 -1 1]u, 1| | p

By summing all of the expanded matrices and using the action-reaction law P, +P,, We obtain the global
matrix equation
1 -1 0 0 O0]fluy, [1/2]
-1 2 -1 0 0|y
EA
/0 -1 2 -1 0]llu,|=fAxA| 1 |+
Ax
0 0 -1 2 -1|lu,
0 0 0 -1 1|u, 1/2

(4.11)

T o o oJu

The next step is to impose the boundary condition at the first node U,. First, we separate the first row of
the above equation.
_ fAxXA

B -u) =R 4R, (4.12)

This equation provides information about the reaction force at the restrained node. The rest of the equations
can be written as:

U,
-1 2 -1 0 O y 0
0 -1 2 -1 o]l " 1 0
EA u, |= fAxA + (4.13)
Ax|0 0 -1 2 -1 U 1 0
0O 0 0 -1 1]° 1/2| |P
L Us ]
Then we separate the first column from the above equation to obtain
-1 2 -1 0 0]fu, 0
0 -1 2 -1 0|u 1 0
EA| Y, LEA | =faxA| | |+ (4.14)
Ax | O Ax| 0 -1 2 -1flu, 1 0
0 0O 0 -1 1}|u, 1/2 P

The new vector corresponds to the restrain of the system at x=0. Thus, the global matrix equation results in
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2 -1 0 0y 17 [o
L e 2 I NN e R (4.15)
Ax| 0 -1 2 -1 u, 1110

0 0 -1 1]|u, 12| |P

Imposing the boundary condition at the first node U,=0we obtain

2 -1 0 0y 0
EAl-1 2 -1 0 )y, = fAXA . + 0 (4.16)
Ax| 0 -1 2 -1fu, 1110

0O 0 -1 1]|u, 1/2 P

If we take P=0 the result is the same result as derived in Section 2.4 but using a different method: In Section
2.4 we obtained the global matrix equation using the global shape function; here we calculate first the
element matrix equations and then assembled all matrices and apply boundary conditions. Note that the
essential boundary condition (nodes with zero displacement) was applied by eliminating the row and
column of the corresponding node.

4.4 Two-dimensional trusses

Plane trusses consist of a pin-jointed assembly of bar elements, each of which is in a state of pure tension
or compression. A simple truss structure is shown in Figure 4-5, which is the subject of the analysis in this
section. The general procedure explained in the previous section is employed here for the analysis of the
truss structure. The general procedure for finite element analyses depends very little on the type of the
structure and whether the structure is a truss, a frame, or a discretised continuum.

1. Coordinate system
A cartesian coordinate system is best suited to any type of truss.

2. Discretisation

The truss structure consists of 10 members. Each of the members is chosen as a pin-jointed finite element.
No further discretisation is required for a simple truss structure. The finite elements are numbered from 1
to 10 (in circles) as shown in Figure 4-5. A linear bar element has two nodes, and each node has 2 degrees-
of-freedom.

Figure 4-5 Truss structure
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3. Node numbering system

The choice of the node numbering system for a structure affects the distribution of the non-zero stiffness
components in the global stiffness matrix. It also affects the storage size of the stiffness matrix in many
finite element programs. In general, a good node numbering system shall minimise the difference
between the end node numbers of any member that is a part of the structure. Such a numbering system
for the nodes is shown in Figure 4-5.

4. Element stiffness matrix
The stiffness matrix of bar elements has been derived in the Section 4.4 as:

_AE| cs s* —cs -s
* L |- -cs ¢ cs
—cs -S cs S

k (4.17)

Where A, E, and L are the cross-section area, the Young’s modulus, and the length of the bar element,
respectively, and c=cos 8, s=sin 8, where 0 is the inclination angle of the element axis with respect to
the global x-axis, measured in the anti-clock wise direction. The stiffness matrices of all elements are
calculated from Eq. (4.17) and shown in Table 4-1. The displacement vectors for different elements
are also shown in the same table.

Table 4-1 Stiffness matrices and displacement vectors of the bar elements

Element No. Displacement vectors Stiffness matrices
1,2,3,10 uf =[uy vy, Uy, v, 10 -10
- U3 =[Uy, Vy, Uy, V]  _AE[00 00
= 1,2,310 — ",
0=0° us =[u,, vy, Ug, V] H{-1 0 10
- 00 00O
ufo—[u3,V3,U5,V5]
4,6 [u v, 0, v,] 1 1 -1 -1
Uy =LH Yo Far Bs @ - AE |1 1 -1 -1
L=y2H ug =[Us, Vo, Us, V5] o2 HI-1 1
0 =45°
-1 -1
0 00 O
5,8 e =|U,, V., U, V
Ug [ 2 2 3 3] ke _E O 1 0 _1
L=H, ug =[Uss Vi, Us, V] 5" Hlo 0 0 0
0=90° 0 10 1
7,9 —[uvuv] 1 -1 -1 1
L_\/EH u; = 41 T4 M3 T3 ke ~ AE _1 1 _1
0 =135 g =[s: Vs Us, V5] "2 H[-L 1 1 1
1 -1 -1 1
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5. Global stiffness matrix

The element stiffness matrices can be enlarged to full structure size and added together to assemble the
global stiffness matrix for the complete structure. An example of this type of assembly has been given
in Chapter 1. Since each node has two degrees-of-freedom, the unrestrained global stiffness matrix for
the 6-noded structure is of the order 12x12:

_1+ 1
N2 22
1
242 242

-1 0

0 0
1
22 22
1
22 22

0 0

0 0

0 0

0 0

0 0

0 0

6. Boundary conditions

-1

0

1

2+ ——
22

1
22

0

1

22

o1
22

0

0 1

"o
1
RN
1
ﬁ 0
1
1+m 0
1
0 l+ﬁ
-1 0
1
RN
1
° e
1
_ﬁ -1
1
,ﬁ 0
0 0
0 0

1

W2
o1
22

_
22
1
22
2+i

22

1
22

0

1

22

-5

22
o1
22

1

1+—
2

0

(4.18)

The boundary conditions shall be applied by eliminating rows and columns of the global stiffness matrix
associated with the fixed degrees-of-freedom. Four of the degrees-of-freedom are restrained, i.e., us, v,
Us, Ve. Therefore, columns 1, 2, 11, 12 and rows 1, 2, 11,12 of the global stiffness matrix are eliminated
and the size of the restrained stiffness matrix reduces to 8x8:
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_2+L 1
22 22
1
2.2 2.2

0 0

A 0 -1

W

1 0

0 0

1 1
2.2 22

1 1
A 22

0 -1 0
1 0 0
0 1
2.2 2.2
1 1 1
1+— -
2 22 22
1 1 1
- 2+_ -
2.2 22 22
R S L1
22 22 22
0 0 0
0 0 -1

1+i

V2

(4.19)

The restrained degrees-of-freedom shall also be eliminated from the global displacement vector and the

global force vector:

7. Solution of the finite element equations

FR=[p2quipsiqs’p4’q4’psaQ5 ]T

A = T
R_[uz >V2 au3 aV3 9u4 ,V4 :u5 ,V5]

The finite element equations can now be solved for the unknown nodal displacements:

where:

[ 0.6547
-0.1845
0.1488
H | —0.1488
EA| 0.3453
0.1488
0.1845
0.1845

—0.1845
2.7294
—0.0641
1.9497
—0.1488
1.5454
0.4895
1.4323

Kr Fr = Ag
0.1488 -0.1488
—0.0641 1.9497
1.1200 -0.1772
—0.1772  2.0628
0.1845 -0.1845
—0.4895 1.4323
0.6736  0.2692
-0.2692 1.2120

0.3453
—0.1488
0.1845
—0.1845
0.6547
0.1845
0.1488
0.1488

0.1488
1.5454

—0.4895

1.4323
0.1845
2.7294
0.0641
1.9497

0.1845
0.4895
0.6736
0.2692
0.1488
0.0641
1.1200
0.1772

0.1845 |
1.4323
—0.2692
1.2120
0.1488
1.9497
0.1772

2.0628

(4.20)

(4.21)

(4.22)

(4.23)

Assuming that a vertical load of 1000 kN is applied at node 3, as shown in Figure 4-5, and E=2x10® kPa,

A=0.01m? H=4 m, a solution to Eq. (4.22) results in:
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N
AR=[u2,V2,u3,V3,U4,V4,U5,V5]

(4.24)
=[ .0003, —.0039, .00035, —.00413, .00037, —.00286, —.00054, —.00242 ]T

The displacements associated with the restrained degrees-of-freedom, us, vi, Us and ve are all zero. The
reactions at node 1 and 6, i.e., p1, g1, Ps, gs, Can be calculated by multiplying the first, second, eleventh
and twelfth rows of the unrestrained stiffness matrix by the displacement vector, A :

[p,.0,.Ps 0y | = [517.88,666.67, —517.88, 333.33 | (4.25)

8. Calculation of stresses and strains for each element

The axial strain, €, and axial stress, o, in any element can be calculated from the element nodal
displacements. The nodal displacements should be transformed into the local coordinate system of the
element under consideration. The relationship between the element nodal displacements in the local

coordinate system, A, , and the element nodal displacements in the global coordinate systems, U €, was
given in Eqg. (4.1):

A, = T'u, (4.26)
where T is the transformation matrix, defined by:
[ cos(0) —sin(0) 0 0]
sin(0 0 0 0
T O cos®) . (4.27)
0 0 cos(0) —sin(0)
] 0 0 sin(6) cos(6)

Here 6 is the inclination angle of the element. The axial strain and stress for element 6, for example, are
calculated as follow. The element nodal displacement vector in the global system, U €, is

u=1Ju,,v,, ug, v ]T = [0.00030, —0.00390, —0.00054 , —0.00242 ]T (4.28)
Therefore the element nodal displacements in the local coordinate system is:

A =T u, =[U,,V,,U,,V,] (4.29)

cos(45)  sin(45) 0 0| 0.00030 —0.00255

—sin(45)  cos(45 0 0| —00390 | |-0.00297
AS (45) (45) _ _ (4.30)

0 0 cos(45) sin(45) || —.00054 —0.00209

0 0 -sin(45) cos(45) || —.00242 —0.00133

The axial strain and stress can be calculated for the element as:

.o U,-U, _ —0.00209 + 0.00255 — 0.00008 (4.31)

L a2

c =Ee= 15986 kPa (4.32)
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4.5 Two-dimensional flexural frames

The Figure 4-6 shows a plane frame consists of 5 elements that are rigidly connected together. The supports
are also fully fixed. The properties of the elements are:

Elements 1, 2, 3: A=0.0025m?, 1=0.00005m*, E=2x108 kPa
Elements 4, 5: A=0.0010m?, 1=0.00025m*, E=2x108 kPa

If a horizontal load of p,=1000kN is applied at node 2, we want to calculate the rotations of node 2.

3 © <+ O 8
@) @ ® 5m
y 1 3 5
7777 7777 7777
X 10m -

Figure 4-6 Frame structure

The general procedure for finite element analyses, explained in the previous section, is employed here for
the analysis of the frame.

The coordinate system, discretisation (element numbering) and node numbering system used for the
analysis of the frame is shown in Figure 4-6.

1. Element stiffness matrix

The stiffness matrices of all elements are calculated using Eq. (3.32) and shown in Figure 3-5, together
with the element displacement vectors.

2. Global stiffness matrix

The global stiffness matrix is assembled using the direct method explained in the previous section. The
restrained global stiffness matrix for the complete structure is given as:

[ 40960 0 2400 40000 0 0 0 0 0
0 104800 12000 0 —4800 12000 0 0 0
2400 12000 48000 0 —12000 20000 0 0 0
—40000 0 0 80960 0 2400 —40000 0 0
Kg = 0 —4800 -12000 0 109600 0 0 —4800 12000 (4.33)
0 12000 20000 2400 0 88000 0 —12000 20000
0 0 0 —40000 0 0 40960 0 2400
0 0 0 0 —-4800 -12000 0 104800 -12000
0 0 0 0 12000 20000 2400 -12000 48000 |

54



Table 4-2 Stiffness matrices and displacement vectors of the flexural elements

Element . i .
No Displacement vectors Stiffness matrices
[ 960 0 —2400 -960 0 ~24007]
ut=[u,v,, 6,, u,, v, 0,] 0 100000 0 0 -100000 0
123 | u= 0 0 o | 2400 0 8000 2400 0 4000
' 2= [Us: Var 00w v O] | Ko=) 960 0 400 950 0 2400
Us=[us, Vs, 05, U, Ve, 0] 0 -100000 0 0 100000 O
| 2400 0 4000 2400 0 8000 |
(40000 0 0  —40000 0 0
0 4800 12000 0  —4800 12000
45 uz =[u,, vy, 0,,u,,v,,0,] o _| 0 12000 40000 0  -12000 20000
: us =[u,, vy, 0, ug, Ve, 0] *S 7140000 0 0 40000 0O 0
0  -4800 -12000 O 4800  —12000
0 12000 20000 O  -12000 40000 |

3. Boundary conditions

The boundary conditions have been applied to stiffness matrix by the direct assembly method. The
vectors of the restrained global degree-of-freedom and the global force vector for the structure are:

T T
Ag =[u,,v,,0,,u,,v,,0,,u5,v6,0,] =[a,a,,a,,8,,a,,a,,8;,8,,a,]

F. =[P, 95y My, Puy G4 My, Pe, G, M ] =[1000, 0, 0, 0, 0, 0, 0, 0, 0]

4. Solution of the finite element equation

The finite element equations can now be solved which result in the unknown nodal displacements:

A = [ 0.394,0.002,-0.019,0.377,0.000,-0.002,0.370,-0.002, - 0.018 ]T

Therefore the rotation of node2 is 82= — 0.019 radians; the negative sign indicates a clockwise rotation.

4.6 Suitable node numbering system

A suitable node numbering system is needed to minimise of non-zero elements in the stiffness matrix. This
will help in optimizing computer storage and will reduce the number of calculations required to invert the

stiffness matrix. This section provides simple instructions for a suitable node numbering system.

If the nodes are suitably numbered so that the maximum difference between nodal numbers in any one
member is kept small, the stiffness matrix consists of a narrow band of non-zero numbers clustered about
the main diagonal. Figure 4-7(a) shows diagrammatically such a banded stiffness matrix. In this figure Ngor

is the order of the full square stiffness matrix and B is the “bandwidth”, defined as:

B=d, X( 1+‘ ( Node; — Node; )max‘ )
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where dof is the number of degrees-of-freedom at each node and ‘( Node; - Node, )max‘ is the difference
between end node numbers in the member that has the maximum difference in end node numbers.

The stiffness matrices are also symmetric. Therefore, for the purpose of efficient storage, the compact
storage of Figure 4-7(b) should be adopted, in which only the upper half of the band of the whole stiffness
matrix is stored. The diagonal of the whole stiffness matrix becomes the first column of the compact matrix.
In large problems B may be only a few percent of Naot. Thus, very large savings in storage can be made by
the compact storage of global stiffness matrix.

A large portion of the computational time in a finite element analysis is spent on solving the global matrix
equations, i.e., finding the inverse of the stiffness matrix. The computational time required for solving the
stiffness equations is approximately proportional to the square of the bandwidth of the stiffness matrix.
Therefore, a suitable node numbering system allows considerable reductions in computational time by
reducing the bandwidth.

To demonstrate the effectiveness of a suitable node numbering system in reducing the bandwidth of a
structure, consider a five-story frame structure consisting of 10 nodes, each with three degrees-of-freedom.
The restrained structure has 30 degrees-of-freedom, thus Nqor=30. Three different node-numbering systems
are shown in Figure 4-8, together with the stiffness matrices resulting from each of the systems.

N
<~ B — dof «<— B —
[X X X X 0 o o o o000 OO OO OGO OO O X X X X]
X X X X X o0 0o00O0O0O0TO0UOGOUOUOO O X X X X
X X XX X X o o oo o000 0000 0 0 O X X X X
X X X XX X X o o0oo0o0O0UO0O0O0GO0TO0TO0TO0O0 X X X X
0o X X XX X X X o oo o0o0O0O0O0UO0O0TO0O0 X X X X
00 XXX X X X X o0o0o0o0UO0UO0TO0TO0OTO0TO0O0 X X X X
0 0o XX X X X X X o o o o0 o000 00 0 X X X X
0 000 XX X XXX X o0 o0o0o0o0O0O0O0O0 X X X X
000 00XXXXXXXwo0o0o0O0O0O0O0O0 X X X X
NdOf 0 000 00X XXXXXXo0o0o0o0o0 0 o0 NdOf X X X X
0 0 00000 X X X X XXX o0 o0 o0 o0 o0o0 X X X X
0 0000 O0OOXXXXXXNXo0o0o0o0o0 X X X X
000 00O O OOIXXXXXXXo0o0o0o0 X X X X
0O 000 0O OO OO OO OOXXXXXXX o0 o0 o0 X X X X
0O 00000 OO OOTU OUIXXXNXNXNXNXoo X X X X
0 0000 0O OOUOOU OOXXXXXXXo X X X X
0 000OOT® OO OOUOUOTUOTQ OXXX X X X X X X X X
0O 0000 O OO O0OO0OO0OTUO0OTUOTGOXXXX XX X X X o
0 000O0OO OOUOUOUO OO OO OO 0OXX X X X X X o o
lo oo o 00 00O0OO0OOUOTU OUOTOOX X X X] X o o o
(@) (b)

Figure 4-7 The banded system and compact storage of the stiffness matrix

Each (x) in the stiffness matrices represents a 3x3 matrix containing the stiffness coefficients associated
with a node. For system (a) the bandwidth B is equal to 9, and for systems (b) and (c), B=18 and B=30,
respectively. Obviously for this structure the most suitable node numbering system is the one presented in
Figure 4-8(a). The worst node numbering system is case (c) in Figure 4-8.
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Figure 4-8 Different node numbering systems (After Dawe, D. J., 1984, Matrix and Finite Element

Displacement Analysis of Structures)
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Problems

Problem 4.1. Trussesl

Derive the global matrix equation of the structure in the figure. All members of the structure have a cross
section area A = 0.001m? and a Young modulus E=2x108kPa.

Q) \
4 45° 3

10m

j>€:L 2])100kN

Problem 4.2. Trusses2

Derive the global stiffness matrix of the structure in the Figure above. All members of the structure have a
cross section area A = 0.01m? and a Young modulus E=2x10® kPa.

j> SN

10m

30° )

400kN

Problem 4.3. Trusses3

This problem is about the construction of the stiffness matrix for a simple pin-jointed structure that consists
of two bar elements as shown in the figure below. Both elements have the same cross-section area, A, and

Young's modulus, E. The length of the bar “b” is L.
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1) Find the element matrix equation f, = k u,for each bar.
2) Find the expanded element matrix equation F, = K U, for each bar

2
3) Find the unrestrained global matrix equation F = KU, K=Y K,, F=)>'F,

e=1 e=1
4) Find the global matrix equation after applying the boundary conditions.

5) Find the displacement of the unrestrained nodes

Problem 4.4. Trusses 4

1) Calculate the nodal displacements and reactions for the pin-jointed structure shown below.

(All members of the structure have a cross section area A = 0.001m? and a Young’s modulus E=2x108 kPa.)
2) Evaluate the results, are they reasonable?

3) If the cross section area of the vertical member is increased by 1000 times, how does this change affect
the results?

S A
10m
», \4
,100kN

Problem 4.5. Solver and pre- and post-processing

This question is about finding the structure of the finite element analysis using the steps listed below. Most
of these steps belong to the three main components of the analysis: pre-processing, processing, and post-
processing. Few of the steps are not necessary. Find the steps for each component and sort them in the order
they should be executed during the analysis.

a) calculate displacement at the  f) invert global stiffness K) input nodes

domain matrix I) invert unrestrained global matrix
b) assembly unrestrained global  g) apply boundary equation

matrix equation conditions m)calculate stress at the nodes
¢) input boundary conditions h) calculate nodal loads n) input elements
d) calculate stress at the domain i) create element matrix 0) calculate nodal displacement
e) input material properties equations

j) invert element stiffness
matrices

Write your solution in the table below. (Note: Not all boxes have to be filled.)
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Component include the letters a—o of the steps, in the order they should be executed
Pre-processor
Solver
Post-processor

Problem 4.6. Two bar elements

This problem is about the construction of the stiffness matrix for a simple structure that consists of two bar
elements as shown in the figure below. Both elements have the same cross-section area A=0.01m? and the
same length L=1m. A load P=10N is applied at the right node. Write your solutions in the boxes below.

Uz Uz us
j[ E,=50MPa  E,=100MPa P
- X +

1) Write down the element matrix equation f, =k u, for each bar.

2) Find the expanded element matrix equation F, = K_u for each bar
2

3) Find the unrestrained global matrix equation F = Ku, ~ K=) K, F=)F,
=1

4) Find the global matrix equation after applying the boundary conditions.
5) Find the displacement of the unrestrained nodes.
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Chapter 5
STRAIN AND STRESS IN CONTINUA

The general equations for derivation of the finite element relationships have been established in the previous
chapters through consideration of simple one-dimensional elements such as bars and beams. The extension
of the general equations to two or three-dimensional elements differs from the unidirectional case only in
the degree of complexity involved and not in the basic concepts. The remainder of the textbook will be
focussed with two-dimensional elements, but before such elements can be studied in detail, a review of the
relevant concepts and the governing relations of continuum mechanics will be presented.

To carry out a stress analysis of a structure using the finite element method, it is first necessary to understand
the matrix formulation of stress and strain. If you intend to use the method, you should also need a good
comprehension of constitutive modelling. The reason for this is obvious. Human lives will depend on how
well you model the structure and interprets the results. Ultimately, it is a stress analysis problem you will
be investigating when analysing a bridge or a foundation — not a computer analysis problem as often
depicted in glossy FEM commercial package sales brochures. No matter how sophisticated the computer
method may be, experience and knowledgeable engineering judgement should always be the absolute

criterion for a correct engineering design decision.

In this chapter, the strains and stresses in continua are presented followed by the stress-strain relationships.
Consideration on constitutive modelling is focused to linear isotropic elasticity. A brief review on the theory
of elasto-plasticity is provided in the last section.

5.1 Kinematic equation: Definition of strain

In this section the concept of normal strain and shear strain in a solid continuum will be reviewed.
Expressions for transformation of strains from one coordinate system to another are also provided. When a
body is subjected to applied loads it will distort. A small element which is subject to in-plane loading may

deform in the manner shown schematically in Figure 5-1.

R A
i Ay I/ III
X X S / X
Normal strain in Normal strain in Shear strain in
the x-direction the y-direction the x-y plane

Figure 5-1 Normal and shear strain in x-y plane

In general, a small planar distortion can be broken up into:
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@) a rigid body translation in the x direction
(b) a rigid body translation in the y direction
(©) a rigid body rotation about the z axis

(d) a normal strain exx in the x direction

(e) a normal strain gyy in the y direction

() a shear strain yxy in the xy plane.

The rigid body components (a, b, ) involve no change in shape and hence no strain. The axial extensions
(d and e) involve a change in area while the shear strain (f) involves no change in area.

Relation of strains to displacements

An examination of the displacements for the element shown in Figure 5-1 shows that for small deformations
and changes of shape, the strains can be expressed in terms of the displacement components as follows:
ou,
8)()( =
OX
_ouy
yy ay
ou, , ouy

oy 0OX

€ (5.1)

,ny =

These equations can be written in matrix form

9
OoX

XX ~ UX
gy |=| 0 U (5.2)

oy

Rl 2

By examining the deformation of elements in the yz and zx planes it is possible to identify similarly the
strains in these planes:

ou,
8ZZ=
0z
ou, du
:_y+_z 5.3
Y =7, oy (5.3)
ou, ou,
T = +—
0z 0OX

The full three-dimensional kinematic relation can be written in a compact for as
£=L[u(x)] (5.4)

where:
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| 0z

Rlo R[>

o

o

9
oy
9
OX |

(5.5)

(5.6)

(5.7)

Eqg. (5.4) can be used to evaluate expressions for the strain components if the displacements are known.
These expressions may be exact as in an analytic solution or approximate as in the case when the
displacements are expressed in terms of interpolation functions. Eq. (5.4) gives zero strain whenever the
displacements considered correspond to a rigid body movement.

The volumetric strain ey for an element is defined to be the increase in volume divided by the initial volume
of the element. For small strains it is related to the normal strains by the following relationship.

€&, =&, +&, +E, (5.8)

5.2 Transformation of strain

It is sometimes convenient to determine the strains in terms of a local coordinate system. It is therefore
necessary to find a method for transformation of strains from one coordinate system to another. The
transformation of strains is facilitated by introducing the mathematical component of shear strain &xy. In
contrast to the engineering shear strain, yxy, this is defined by the relation:

_ ny
gyz = Szy — % (59)
Y
SZX = 8XZ = ?
The strain tensor ¢ is then defined as
8xx 8><y 8><z
&= Syx Syy Syz (510)
Szx Szy 8zz
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where the components of the strain tensor can be calculated from the displacements using the relationship:

Epg = 1Y, , oY, (5.11)
2{ 0q op

And p, q can be any of the symbols x, y, z.
In the transformed coordinate system, the strain tensor has the form

SXX 8XY 8XZ

E= €yx Eyy &yz (5.12)

E€x &y &g

where Epq = %(%UQP + %J and P, Q can be any of the symbols X, Y, Z.
The local and global coordinate systems are related by the relation given in Eq. (B.5), Appendix B:
r=HR (5.13)
where:
X X L, m n
r=ly|, R=|Y]|, H' =|l, m, n,
Z Z I, m, n

And i, mj, n; are the cosine of the anti-clockwise angles between the different axes of the two coordinate
systems, as defined by Eq. (B.6) in Appendix B.
The strain tensors in the different coordinate systems can be related by the relations:
e=HEH' (5.14)
E=HsH (5.15)

Strains in a cylindrical polar coordinate

The strain components in cylindrical polar coordinates can be found by determining the strains relative to
a set of reference axes X, Y, Z with the X axis parallel to the r direction, the Y axis parallel to the 0 direction
and the Z axis parallel to the z axis as shown in Figure B.4, Appendix B. Thus:

€, &4 €, c s Olle, &, g,[]lc s 0
€ €y &y |=|—S ¢ Olle, &, €,[s ¢ 0 (5.16)
€, €4 €, 0 0 Ijle, ¢, €,]0 0 1

where c=cos0 and s=sin6.

The expressions for strains in terms of displacement components in polar coordinates are more complex
than in Cartesian coordinates. It is found:
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ou

r

grr =
or
10u, u,
899 Z—E-F—
' r (5.17)
_ouy 10u, _

= + =2g
Y0 =5, Ty a0 e
10u, oJu, u,
_2oU, OUy Uy e
L A T

5.3 Balance equation: Definition of stress

The previous section has been concerned with deformation of a continuous body. In this section the forces
within the body that cause this deformation will be examined, stress components under three-dimensional
conditions will be defined, and the concept of a stress tensor (matrix) will be introduced together with
transformation of stresses in different coordinate systems.

Az
y
AX

X Ay

Figure 5-2 Infinitesimal cube used to define the stress

Consider a small rectangular box, having sides of length Ax, Ay, Az parallel to the X, y, z axes respectively
see Figure 5-2. The material outside the boxes will exert a force on each of the six sides of the box. As the
dimensions of the box approach zero, the forces on the sides of the box also approach zero. However, the
force per unit area approaches a limiting value that is called the traction. Consider the positive x face (the
face having the x axis as its outward normal) and assume the X, y, z components of the force acting on this

face are denoted AFxx, AFxy, AFx; respectively.

The stress components (oxx, Oxy, Oxz) at point P inside the face are defined by the relationships:
.= AF O,.= Afy 0,,.= AFq

“AA Y AA, “AA

X

(5.18)

X
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where AAx = Ay.Az is the area of the x face.

It is similarly possible, by considering the force acting on the y, z faces, to define the stress components
(oyx, Oyy, Oyz) acting on the y face and those acting on the z face (o2, 62y, 622). In general

— Aqu

qu. =—
AA,

(5.19)

where AFpq is the force acting on the p-face along the g-direction and AA, is the area of the p-face.

The collection of stress components cpq (Where the indices p, g can take any of the values X, y, z) is called
the stress tensor at point P, and is defined below:

O ny Oy,

c=|c, G, O© (5.20)

zx Gzy Oz

The stress components oxx, oyy, oz are called normal or direct stresses. The components cxy, Gyz, Gzx,, Oyx,
G2y, Ox; are called shear stresses. In structural mechanics a tensile normal stresses are assumed to have a
positive value. In soil mechanics compressive stresses are assumed to be positive.

Traction acting on a plane

The stress tensor defined in the previous section can be used to calculate the force per unit area acting on
any plane passing through P. Suppose that a plane passing through point P has an outward unit normal n as
shown in Figure 5-3.

Normal n

Figure 5-3 Traction acting on a plane

By considering the equilibrium of the tetrahedron shown in Figure 5-3 it can be shown that the traction T
(force per unit area) acting on the plane is given by:

T=06n (5.21)
T, = Oy N+ 0, N, + 0, N,
T, = 0, 0, + 6, N0, +0,1n,
T, = Oy, 0, + 0, N, + 0, N,
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A simple demonstration of this is found by considering the x-y plane system of stresses in which there are
no shear stresses acting on the z face, so that ox.=0 and oy, = 0. The situation is shown schematically in
Figure 5-4.

Figure 5-4 Relation of stress and traction

Equilibrium of the forces in x and y directions reveal that:
T, |AB| = 0, |OB|+ Oy |OA|

T, ‘AB‘: Oy ‘OB‘-I—GW ‘OA‘
|OA| = cosa |AB|
|OB| = sina|AB|

The normal to AB is given by:
n=[n, ny]T =[sino cosa]’

So that:

Ty

Oy N, + Oy 1

Ty

o, 0, +0, 1,
Static equations for the stress

Under most cases the stress distribution will vary from point to point. In most civil engineering analyses it
can be assumed that processes are quasi static, i.e., the effects of acceleration can be neglected. In this case
consider the equilibrium of rectangular box shown in Figure 5-5.
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Figure 5-5 Left: equilibrium in a rectangular box whose center is the point (X,y,z). Right: stress components

seen from the top.

The force in the z direction acting on the face A"B"C"0” is: +0,, (X,y,z+Az/2)AxAy
The force in the z direction acting on the face AB C O is: -0, (x,y,z —Az/2)AxAy
The force in the z direction acting on the face A B B*A*is:  +0,, (x+Ax/2,y,z)AyAz
The force in the z direction acting on the face O C C*O* is: —GXZ( x—Ax/2,y,z)AyAz
The force in the z direction acting on the face B C C*B*is:  +0,, (x,y+Ay/2,z)AzAx

The force in the z direction acting on the face A O O*A*is. -0, (X,y—Ay/2,z)AzAx
The force in the z direction due to the self-weight of the material is: w,AxAyAz

In the above relations, the quantities in brackets “()” indicate the coordinates of the point at which the stress

is taken.

The sum of these 7 force components must vanish. By dividing the resulting equation by the volume of the

box and letting Ax,Ay,Az—0 it is found that:

0, (xtAX/2,y.2) ~0,, (X~ AX/2.y.7) O, (X,yTAY/2,2) — 5, (x.y — Ay/2.2) | Ou(RyzHAZ2) =0, (XYy.2—AZ/2)
AX Ay Az

Now we use the concept of the partial derivative to obtain

acsxz aGyZ 86zz
+ + +w, =0
ox o0y oz

The complete set of equilibrium equations can be derived in similar fashion and it is found that:

0
do O, 00 +w, =0
ox oy o0z

+—2+—E 4w =0
ox oy o0z

+—2+w,=0
ox o0y o0z
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where wy, Wy, W, are the components of the unit weight of the material in the X, y z directions respectively.
It can be written in a compact form

L 'o+w=0 (5.25)
where L is the differential operator defined above, and

N

G=|:GXX, Oys Ous Oy» Oy GXZ]
T

W:[WX, W, WZ]

The equation above is also called the strong form of the equilibrium equation. For the finite element analyis,
it better to formulate equilibrium using the weak form that will be presented in Chapter 6.

Stress components in different coordinate systems

The stress components defined by Eqg. (5.20) were based on the X, y, z coordinate system. The coordinate
system X, Y, Z could also have been used to define the stress tensor X and in that case it would have been
found that:

Oxx Oxy Oxz
X=|0yx Oyy Oy (5.26)
Ozx Ozy Oz

If Eq. (5.13) is applied to the three planes having the X, Y, Z directions as outward normal respectively,
the stress tensors are related by the following equations:

=HZH'
° (5.27)
X =H'oH
where H is the transformation matrix which relates two coordinate systems and defined by Eqg. (B.6).

Example 5.1

In example 5.1 the stress state was given relative to the X, y, z coordinate system. However, when
examining the stress state in the silt seam it is more appropriate to use a local (X, Y, Z) axes in which the
Y axis is normal to the seam and the X, Z axes are in the plane of the seam. Thus

O O Oy | [+0.9397 —03420 O|[-250 0 0 |[+0.9397 +0.3420 0
X=|o, o, o, |=+0.3420 +0.9397 O|| 0O -300 O ||-0.3420 +0.9397 0
Oy Op Oy 0 0 1/ 0 0 -250| 0 0o 1

—-255.85 16.07 0
Y=| 16.07 -29415 0 |kPa
0 0 —-250

Symmetry of the stress tensor

The convention adopted in defining the stress components is that opq defines the "p" component of traction
(force per unit area) acting on the plane having the "g" axis as the outward normal. By considering the
moment equilibrium of the rectangular box shown in Figure 5-5, it can be shown that:
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G, =0 (5.28)

Stress components in cylindrical polar coordinates

The stress components for a set of cylindrical polar coordinates correspond to those for a set of Cartesian
axes having an X axis parallel to the r direction, a Y axis parallel to the 6 direction and a Z axis parallel to
the z direction.

6, G, O, ¢c s Ofjo, o, o,llc —s O
Oy Op Oy, |=|—S ¢ O|lo, o, o,lls ¢ O (5.29)
Gzr GZG 0zz 0 0 1 sz Gzy 7z 0 0 1
where ¢ = cosO and s = sin®.
The conditions of equilibrium expressed in terms of polar coordinates are:
aGrr + 1 aGré) + aczr O —Ogo +W, =0
or r 00 oz r
06, N 100y, N 0G,, N 20, +w, =0 (5.30)
or r 06 oz r

anr l 6(592 anz Gzr
- + + +w,=0
or r 09 0z r

where wr, we, W, denote the components of body force acting in the r, 0, z directions respectively so that:

Wi WC0S0 +w,sind
Wo | =| -w,SIN0 +w cos0 (5.31)
W; W;

5.4 Stress-strain relations

The concepts and relationships developed in the previous sections are applicable to any material. Different
materials respond to application of forces in different ways and are said to have different constitutive
behaviours. In this section the linear relationship between strains and stresses under three-dimensional
conditions will be introduced. We assume that the material is isotropic, and it behaves elastically. The
relationships for the special cases of plane strain, plane stress, and axi-symmetric conditions will be derived
from the general relationship.

Consider a simple element in a structure. In general, the element will not be in a state of zero stress. It will
almost certainly be subjected to atmospheric pressure; however, it may also be subjected to additional
stresses. For example an element of concrete in a gravity dam, shown in Figure 5-6, will be subjected to
stresses due to the self-weight of the material, or an element in a steel section may be stressed because of
the rolling process or heat treatment used in its production.
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(a) Initial State (b) Final State

Figure 5-6 Dam subjected to water loading

If the element is subjected to an increase in stress it will respond by undergoing an increase in strain. Many
materials, to sufficient accuracy, respond in the following simple manner:

1) The increment of strain is directly proportional to the increase in stress, i.e., if the increment in stress is
doubled/halved the increment of strain is doubled/halved.

i) The increment of strain due to the combined action of two sets of stress, e.g., a normal stress together
with a shear stress, is the sum of the strains due to each of the sets of stress applied individually.

Such materials are said to be linear elastic.

Isotropic elasticity

An isotropic body is one in which the behaviour on an element within the body does not depend on the
orientation of the element. Suppose an element of an isotropic elastic material shown in Figure 5-6 is
subjected to increases in both normal stress and shear stress. From the previous discussion it can be seen
that the response to this loading can be found by summing the responses of the six components of the
loading as shown in Figure 5-7.

y y "WT z “ZZT

Oxx Oxx

lo» low

X X
@ (b) () X
y — . Oyx z — . Oz z —m Ozy
o | { |
Oxy — § Oxz — y Oyz -—
(d) (e) (f) y

Figure 5-7 Stress components

Consider component (a) in, it is clear from symmetry that the components of shear strain yyz, yzx, yxy are all
zero and also that eyy = €zz. Hooke’s law for uniaxial behaviour states that:
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8XX =
E

g, =—V Géx (5.32)
GXX

€y ="V—/—
E

where E and v are material constants called Young's modulus and Poisson's ratio, respectively. A
consideration of the component (b) leads to the conclusion that the only non-zero strain components are:

Eux = -v—=
E
(&)
By = (5.33)
(¢}
€, :_V_W
E

Similarly it is found that the response to the component (c) leads to the non-zero strains:

Oy
€ = e
E
G,
G,
€, = =
E

The response to the combined normal stresses is thus:

O — V(ny + Gzz)

8XX =
E
- +
Syy — ny V(GXX GZZ) (5.35)
E
. G,, — V(O +csyy)
Y74 E

The shear strain increment, yxy occurs due to an increment of shear stress oxy, as shown in Figure 5-7(d),
can be calculated by the following relation:

o

Vi = g (5.36)(a)

where G is a material property called the shear modulus. Similarly, the responses to the stress changes (e)
and (f) are:

Y Z
Yy, = Ey (5.36)(h)
Vo= (5.36)(c)
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The complete set of stress strain equations is given by Eq. (5.35) and Eq. (5.36).

Because of the isotropy of the material the stress-strain relations expressed in terms of another set of
coordinate axes (X, Y, Z) should have precisely the same form as Eq. (5.35) and Eq. (5.36). This implies
that the shear modulus must be related to Young's modulus and Poisson's ratio. The relationship between
the shear modulus, Young’s modulus and Poisson’s ratio for an isotropic elastic material is:

E
= 5.37
2(1+v) (:37)
The complete expression for strain in terms of stress can be presented in a matrix format as:
(e, ] [ WE —vVE —v/E 0 0 0 |o,]
€y —v/E 1/E —v/E 0 0 0 || oy,
-v/E —v/E 1/E 0 0 0
€z |_|~VE -V O (5.38)
Vo 0 0 0 UG 0 0 |o,
Yy 0 0 0 0 1/G 0 ||o,
Y] | O 0 0 0 0 1/G||lo, |
It is often useful to be able to determine the volumetric strain and it is found that:
(¢}
g, =—1 5.39
= (5:39)

where €, =&, +¢&, +&, is the volumetric strain, o, = (GXX +GW+GZZ)/3 is called the mean stress and

K= L is the bulk modulus.
3(1—2v)

Expression for stress in terms of strain

In many cases it is necessary to calculate the stresses resulting from application of a set of strains to an
element. Clearly in such cases it is much more convenient to have an expression for stress in terms of strain.
There is no difficulty in developing an expression for shear stress in terms of shear strain from Eq. (5.36).

Oy = G. Vi
o, = G. Ty (5.40)
GZX = G * YZX

An expression for the increase in normal stress caused by the increase in normal strain may be found by
writing the first of the relations in Eq. (5.32) to Eq. (5.34) in the form:

1+v \Y%
8XX = (?)Gxx - E(GXX +ny +GZZ ) (541)
and then using Eqg. (5.39) to show that:
o, =Me, +2G g, (5.42)
E
e (5.43)

(1+v)(1-2v)
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The quantity A is called the Lamé modulus. Similar expressions can be found for oyy and oz. Thus the

complete expression for an increment of stress in terms of an increment of strain is:
[A+2G

XX

A

yy
7z
Xy

yz

Q a a a a a
|

o O o >

ZX

or in a familiar matrix notation:

where
GXX SXX
GW SW
c$ZZ SZZ
0= , €=
ny ny
Oy, Vyz
_sz n _ny |

D is called the matrix of elastic moduli.

0

o o O © o

0

o0 o o o

0

0 o o o o

8XX

Eyy

SZZ

oM oo o o
O o o o o ©

(5.44)

(5.45)

(5.46)

It is perhaps worth observing at this stage that the matrix D in Eq. (5.45) is symmetric and positive definite.
This is a general characteristic of elastic material and leads to the reciprocal theorem used in the boundary

element methods.

As stated before, in an isotropic material the form of the stress-strain relation is independent of the particular
choice of coordinate system. Therefore, the relationships given in Eq. (5.38) and Eqg. (5.44) can be written for

cylindrical polar coordinates as:

e, | [ LE
€40 —Vv/E
&, | |-VE
Vro | o
Yoz 0
(Y=l L O
(6, | [A+2G
Ogo
G, A
G o 0
Gy, 0
c 0

1/G

o o O©O O

o o O o o o

O O © O O

o ® o o o o

1/G

(5.47)
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5.5 Plane elasticity

In this section we discuss three different situations where is not necessary to carry out a full three-
dimensional analysis. The three cases are plane stress, plane strain, and axial symmetry conditions. Unders

these condition it is possible to reduce the problem to a two-dimensional problem as follows:

Plane stress

The plane stress case is shown schematically in Figure 5-8, where a uniform thin plate with uniform cross
section along the z direction is subjected to edge loads parallel to the plane of the plate. Clearly the
increments of stresses oz, Gyz, ox; are all zero on both faces of the plate. It is found that to sufficient
accuracy these are zero throughout the entire thickness of the plate. It thus follows that the stresses within
the body are completely specified by oxx, oyy, oxy. It can also be shown that to sufficient accuracy these
stresses do not vary throughout the thickness of the plate and hence depend only on X, y but not on z.

1.,

Figure 5-8 Plane stress of a thin plate

The stress strain relationship can then be written in the form:

€

XX

From this matrix equation we derive the following three equations.

1/E
—v/E
—v/E

0
0
0

—v/E

1/E

—v/E

0
0
0

—v/E
—v/E
1/E
0
0
0

0
0
0
1/G
0
0

B (Gxx —VGW)
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0

O O © o O

1/G
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The increments in stresses can be expressed in terms of the increments in strains as:

E/(l—vz) Ev/(l—vz) 0

O x Sxx
o, |=|Ev/(1-v?) E/(1-v*) 0 |e, (5.50)
Gy 0 0 G || v

The situation illustrated in Figure 5-8 and described mathematically by Eq. (5.49) and Eq. (5.50) is known
as "plane stress". It is important to take into account that due to the Poisson effect the strain component «,,

IS not necessary zero, and should be calculated using the third equation in Eq. (5.49).

Plane strain

The second case in which a plane elasticity analysis is possible is when a long prismatic body, such as the
one shown schematically in Figure 5-9 is subjected to loads which are uniform along the length of the body
and are in the plane perpendicular to the axis of the body.

Figure 5-9 Plane strain of a long prismatic body

For these conditions it is found that the axial displacement u; is zero in the central portion of the body, that
is the region remote from the ends, and the remaining two components of displacement are independent of
z. This leads to the relations:

Yy 0
Yoo |=|0 (5.51)
€ 0

In terms of the remaining components of strain, it follows from Eq. (5.44) that

.| [AM2G A A0 0 0]fe,
Oy A A2G A 0 0 0]e,
op | | A A2G 0 0 0 0
oy | | O 0 0 G 0 0y,
o, 0 0 0 0 G 0[O0
o, | | O 0 0 0 0 GJ 0|

With the plane stress components of this equation we derived the two-dimensional stress-strain relation
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c A+2G A 01le

oy, |= A A+2G 0 |lg, (5.52)
Oyy 0 0 G Yy

The remaining non-zero component of stress is:
0,, = V(GXX +0W) (5.53)

The situation illustrated in Figure 5-9 and described mathematically by Eq. (5.52) and Eq. (5.53) is known
as "plane strain™. In geotechnical engineering this analysis is performed in tunnels, retaining walls or dams
with uniform cross section. In the analysis the movement along the perpendicular direction of the cross
section is assumed to be restrained.

Axial symmetry

The third case for which another simplified form of stress-strain relationship can be presented includes
bodies of revolution which are subjected to axi-symmetric boundary conditions. These bodies constitute
another important category of structures which are essentially two dimensional in nature. Such structures
are called axi-symmetric continua.

A typical axi-symmetric body is shown in Figure 5-10. The z-axis is the vertical axis about which the
geometry and loading is symmetric, the r axis is radially outwards and 0 is the polar angle.

Figure 5-10 Axis-symmetric body

The non-zero displacement components are in z and r directions only and do not vary with 6, since the
prescription of symmetry indicates that the tangential component of displacement is zero everywhere.
Therefore, the vector of strain components for axi-symmetric continua can be derived from Eq. (5.17) as:

€, ou,/or
oo B0 u/r (5.54)
€, ou,/0z

Y., ou,/0r+0u,/0z
The corresponding vector of stresses is:

o= [0, O, GZZ,GrZ]T (5.55)
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The stress-strain relationship for axi-symmetric continua consisting of isotropic materials can be found
from Eq. (5.48) as:

(o A2G A 01 e

= A A2G 0 || g,

c 0 0 Gl v,

rz

18
zz

096 :v(Grr +Gzz ) (556)

The situation illustrated in Figure 5-10 and described by Eq. (5.56) is known as "axial symmetry".

5.6 Material non-linearity

Linear, isotropic elasticity is a safe ground for finite element analysis. However, there are many situations
where these assumptions are not valid. This is the case of analysis of materials near to yielding point of
failure, or problems where the deformation cannot be assumed to be small in comparison with the length
scales of the system. In these cases, a non-linear analysis will be the next step after a linear analysis.

In the non-linear analysis, we formulate the problem as a set of load increments; each one using the
incremental stress-strain relation

Ao = DAeg (5-57)

Then the non-linear analysis will consist two main extensions: geometric and material non-linearity. In the
geometric non-linearity, the deformation of the structure is tracked in each increment by updating the
position of their nodes. Then the stiffness matrix is calculated in terms of each new configuration. The load
path and load increments need to be specified in this analysis. If you expect that your system will experience
large deformation, a geometric non-linearity analysis is highly recommended.

An additional assumption in the non-linear analysis is the material non-linearity. It states that the stress-
strain relation D in Eq. (5.57) depends on stress and probably on the load history. One of the most widely
used non-linear models is the elasto-plastic model. In this model we define a yield surface in the space of
stress, which enclosed a region where only elastic deformations are possible. Plastic yielding results in the
stress point pushing the yield surface in the stress space, so that the stress state is never outside the yield
surface. When the stress is on the yield surface, the strain increment is decomposed into an elastic and a
plastic part

Ae=Ag, +Ag (5.58)

where the elastic part satisfies
Ac =DAg, (5.59)

And the plastic part is given by the so-called non-associated flow rule
1
Aspl=ﬁ<(pAc>\|l (5.60)

The new material parameters are h= hardening modulus, ¢=yield direction, and y=flow direction. Eq.
(5.60) also introduces the step function:

B 0 ifx<0 561
<X>_{x if x>0 (5:61)
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Note that the yield surface is defined in the stress space that has six independent components. It is possible
to reduce this space to three dimensions by using the principal component of the stress. We first note that
the stress tensor is symmetric. From linear algebra we learn that this stress in the reference system of its
eigenvectors is diagonal, and that the diagonal element are its eigenvalues, here called principal components
of stresses.

Thus, the stress in the reference systems of its eigenvectors is:

s, 0 O
6=|0 o, O (5.62)
0 0 o,

Now it is more convenient to define the yield function in the 3D space of the principal components of the
stress tensor. Before to do that, we will define the stress invariants:

Mean (hydrostatic) stress:
p= (o,+ 06,1+ 0,)/3 (5.63)

Deviatoric (Von Mises) stress:

Oym = \/[(01—02)2 + (62—03)2 + (03—01)1/2 (5.64)

Lode’s angle:

tang = i[zcz — % —1]

\/§ UL

-30°<0<30°

(5.65)

These three quantities are called “invariants” because they do not change when the stress is expressed in a
different coordinate system. The geometrical meaning of this stress invariant is depicted in Figure 5-11.
The stress state defines a unigue point in the 3D space with its principal components. Let us project this
point on the so-called hydrostatic line given by the equations,=c,=c,. The distance from the origin of
coordinate to this projection load is the mean (hydrostatic) stress defined by Eq. (5.63). The distance from
the stress point to the hydrostatic line is the deviatoric stress, see Eq. (5.64). Now we define the deviatoric
plane as the plane perpendicular to the hydrostatic line containing the stress point. Finally, the orientation
angle of the stress point in the deviatoric plane is the Lode angle.

79



Inside the surface: elastic deformation

GC3 4
. 01=02=03
/
/
/
// n the surface: plastic deformation
/
A 4
Z O1
>

G2

O3

A deviatoric plane
O1+02+03=constant

Figure 5-11 geometrical representation of the stress invariants

For simplicity one would assume that the yielding of a material depends only on the hydrostatic and
deviatoric stress. In some cases, it is further assumed that the yielding depends on the deviatoric stress
only. In other circumstances, such as in cohesive-frictional materials or composites, the yield depends not
only on the deviatoric stress but also on the hydrostatic loads. Moreover, some yielding models have been
constructed from extension of 2D analysis, such as the Mohr-Coulomb model, leading to yield function that
depends on the Lode angle too. In the Table 5-1 below we present a summary of the most used models to

represent the yield function.
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Table 5-1 Four main models of yield surfaces

Ductile materials (steel): Yield independent on
hydrostatic pressure

Brittle materials (concrete): Yield dependent on
hydrostatic pressure

Tresca’s Yield criterion
1 1 1
maX(§|Ul—62 |’E|O-2 —0; |’E|O'3 — 0 )=k

k=0o,/2

Tresca yield surface

Mohr Coulomb Yield criterion
T=C+o,tang
¢ = cohesion

¢ = angle of internal friction

Von Misses yield criterion
(O'1 -0, )2 + (0'2 —0'3)2 + (0'3 —0'1)2 = 6k?

ol =3k? k=0,/3

O,

O Von Mises yield surface

Drucker-Prager

Ow _

Ve k+3ap
oo 2sing _ 6ccos ¢
J3(3+sing) J3(3+sin¢)

E

Drucker-Prager yield surface
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Problems

Problem 5.1. Poisson Ratio

A cubic sample of steel as of side L=1m as shown in green in figure below is axially stretched by a quantity
AL=1mm. The sample gets contracted in the y and z direction as shown the red cube in the figure. Determine
the compression of the sample AL’. The Poisson ratio of the sample is v=0.3.

Problem 5.2. Biaxial Test

A long rectangular block is subjected to a biaxial stress as shown in figure below. The Young modulus is
E=56MPa and the Poisson ratio is v=0.4. Assuming that the stress is distributed uniformly inside the sample,
determine the horizontal, vertical and shear deformation of the sample.

100 kPa
ARRR
1 e
: -~
: 5m [~ 500kPa
=

4m -
5 -
000000

Problem 5.3. Thin Steel Plate

A rectangular plate shown in the following figure is subjected to uniform tractions at two edges in the x
coordinate direction. The plate dimensions are 800x400%1 mm. The Young’s modulus of the material is
200,000MPa and the Poisson ratio is 0.3. The edge pressure is 1 MPa tensile on short sides. Assuming that
the stress is constant in the plate, calculate all components of the strain
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E=200,000 MPa
v=0.3

1.0 MPa N

.0 MPa

W=400 mm

THTTTTTLT

L

L=800 mm

Problem 5.4. traction

In a geological site a layer of silt was found which is inclined at 20 to the horizontal. The global and local
coordinate systems were set up as shown in the figure. At a point on the silt layer the vertical stress is 300
kPa and the horizontal stress is 250 kPa. Recalling that tensile normal stresses are considered to be positive,
the stress tensor (in the global system of coordinates) is;

O Oy Oy =250 0 0

c=|o, O, O,|= 0 =300 0
0 0 -250

sz Gzy Gzz

The unit vector normal to the surface is:
sin(20°)
n =| cos(20°)

0

Hence the traction acting on the seam is given by:
T -250 O 0 1/ 0.3420 —-85.505

X

T,/=| 0 300 0O |[0.9397|=|-281.908 | (kPa)

y

T 0 0 -250 0 0

z

The components of traction normal and tangential to the seam are given by:

Tn=-0.3420x85.505-0.9397x281.908=-294.15 kPa
T=-0.9397x85.505+0.3420x281.908=16.07 kPa

Yy

Global Coordinates
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Problem 5.5. rotation of stress
In a plane system the stress in global coordinates is:

~ {80.0000 34.6410

34.6410 40,000 | MPd

Calculate the traction on a plane making an angle of 120° with the x-axis.
(Answer :Tx = 86.6025 MPa and Ty=50MPa)

Problem 5.6.

A local set of coordinates with the X axis inclined at 30° to the axis and the Y axis inclined at 120° to the
x axis. If the stresses in the global (X, y) system are given by equation in Problem 5.5, show that the stress
components in the local (X, Y) coordinate system can be given by

100 0
"o 20| M
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Chapter 6

FINITE ELEMENT FORMULATION OF ELASTIC
CONTINUA

In the finite element analysis of a problem, the system is idealised as a set of finite elements interconnected
by their nodes. In the analysis of structures consisting of bars and beams, the elements making up the
complete structure usually correspond to well-defined parts of the structure. However, when a two- or three-
dimensional structure such as a concrete slab or a soil foundation is analysed, there may not clear discrete
parts. Rather the continuum is divided into finite elements by making imaginary cuts. There is generally no
unique way of idealising a continuum structure with finite elements because such elements provide only
approximate mathematical relationships of the continuum structure.

The accuracy of the finite element solution of a continuum problem is dependent on the number, type, and
arrangement of the finite elements from which the structure is assembled. Considerable choices are
available for the basic shape of the elements, the functions used to approximate the displacement field for
the elements, and the arrangement of the elements. This chapter will cover only the classical two-dimensional
finite elements that are used in plane elasticity.

Plane elasticity encompasses continuum problems of plane stress, plane strain, and axial symmetry. The
formulation of each type of problem is almost the same, and the computer code for solving plane stress
problems can be adopted with only minor modifications to plane strain and axial symmetry. In plane stress
problems the forces normal to the plane are zero. In plane strain analysis the “out-of-plane” displacements
are zero. Problems of this kind can basically be treated as two-dimensional problems.

In the first section we will convert the strong formulation of the continuum mechanics of the previous
chapter in the weak form, which is better known as principle of virtual work. Then we introduce the general
method to formulate the equations of the finite element analysis. Next we illustrate some simplest
formulations by introducing one of the simplest yet most versatile family of finite elements, the triangular
elements. Then we introduce the linear rectangular element, which is the basis of more sophisticated, high
order, rectangular elements used in most commercial codes.

6.1 Derivation of the weak form

Here we present the derivation of the weak form, or principle of virtual work, for a general continuum
mechanics problem we assume that in the domain V the continuum structure satisfies the differential
equation:

L [6(x)]+w(x)=0 (6.1)
o(x)=De(x) (6.2)
g(x) =L[u(x)] (6.3)

Where L is the differential operator corresponding to the governing equations. Let us consider a problem
without essential boundary conditions. The only boundary condition is given by the flux at the boundary
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o(x).n=1(x) xe$S (6.4)

where t(x) is the traction applied at the boundary surface S of the domain. The vector n is a unit vector
perpendicular to the surface at point x.

We introduce here a virtual displacementu”(x). Eq. (6.1) is multiplied by a virtual displacement and
integrated over the domain

IU*T(LTG(X)+W(X))dV=O (6.5)

\%

The next step is to use a generalized rule to integrate by part the first terms of this equations. This
integration involves few mathematical steps that we will not include here. The result will correspond to a
generalized principle of virtual work:

[€7odv = [uTrdA+ [uTwdV (6.6)
\Y% S \Y%

This principle stares that the virtual work done by the internal stresses equals the work done by the boundary
tractions plus the work done by the external actions.

6.2 Derivation of the stiffness matrix

Using the principle of virtual work, the finite element formulation for each element can be derived as
follows:

1) The displacement function is connected to the displacement at the nodes using the shape function
u=N.u, (6.7)
2) Strains e=L[u]are connected to nodal displacement
£=B.u, B.=L[N,] (6.8)
3) Using constitutive equation ¢ =Dsg, the stress is related to displacement
c=DB.u, (6.9)
4) Replace the above equation of stress and strain in the principle of virtual work Eq. (6.6), with

u” = Nu, as the virtual displacement, and ¢" =Bu, satisfying the corresponding virtual strain:

[uTBIDB,udV = [uTNIwdV + [uTN]zda (6.10)
V, S,

V,

e e e

where Ve is the volume of the element and S is the surface of the element where the traction is
applied. Since the equation is valid for any virtual displacement satisfying the boundary condition,
the equation above becomes:

ku, =f, (6.11)
k, = [ BIDB.V (6.12)
Ve
f,= [ NwdV+ [N]zda (6.13)
A S,

Here we conclude that the calculation of the element stiffness matrix requires three steps:
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1) Calculate Ne
2) Calculate B by applying the derivative operator to Ne as Be=L[Ne]
3) Use Eq. (6.12) to get the stiffness matrix and Eq. (6.13) To get the load vector

In the next sections we will illustrate the method using linear triangular elements and linear rectangular
elements.

6.3 Triangular elements in plane elasticity (T3)

A general procedure is given to calculate the stiffness matrix of a simple 3-noded triangular element. The
simple triangular element has nodal points at its vertices only. A range of higher-order triangular elements
having additional nodes and consequently a more refined representation of displacement and stress fields
has been proposed to increase accuracy. Some of the higher-order triangular elements will also be
introduced in the next chapter.

The 3-noded triangular element shown in Figure 6-1 is the simplest possible planar element and one of the
earliest finite elements. It has nodes at the vertices of the triangle only. For a plane elasticity problem, where
all displacements are in the plane, the element has two degrees-of-freedom at each node, u and v,
corresponding to the displacements in x and y directions respectively. Thus,the element has a total of 6
degrees-of-freedom. The displacement vector and the force vector are:

T
ue:[ul Vi Uy VU V3:|

f=[p, o, P, 0 P G

Since each of these vectors contains 6 components, the size of the element stiffness matrix, ke, is 6x6.

Y, \(’ q Vs, Q3

>X, U, P

Figure 6-1 Three-noded triangular element

Stiffness matrix of linear triangular finite element

The general procedure explained in Section 6.2 employed here to calculate the stiffness matrix of the 3-
noded triangular element. The node numbering and the Cartesian coordinate system shown in Figure 6-1are
used for the element. The nodes are numbered in increasing order anti-clockwise. The coordinates of the
nodes are (X1,y1), (X2,y2) and (x3,y3). It is noted that the orientation of the element with respect to the xy
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coordinate system is completely arbitrary. Therefore, the element stiffness matrix will be directly expressed
in the xy global coordinate system. Here we perform the three steps mentioned in Section 6.2 to calculate
the stiffness matrix:

1. Derivation of the shape function N

The variation of the displacement components, u and v, within the element can be expressed as
complete linear polynomials of x and y:

u(x,y) =a, +a,x+a.y=q' (x,y) a
(Xy)=a,+a,x+azy gT( y) (6.14)
V(X,y) = bl + bZX + b3y:g (X,y) b

where g(xy)=[L x y]',a=[a, a, a,]' and b=[b, b, b,]".Thevaluesofuandv areknown

at the nodes. Therefore, Eq. (6.14) can be written for all the nodes by substituting the coordinates of
the nodes into these equations:

u =a, +a,X +ay, u, 1 X vl
u, =a +a,X, +azy, or |u,(={1 %X, VY,|a,
U; =8 + 8, X3 +383Y; U, _1 X3 Ys |l as]
v, = bl + bz X, + b3 Y1 A 1 S yl__bl_
vV, =b +b,x, +byy, or |v,|=|1 X, V,]|lb,
V; = bl + bz Xy + bs Ys; \& _1 X3 y3__b3_

We rewrite these equations as

u =Ca and v, = Cb (6.15)
where
1 x y
C=|1 x, VY, (6.16)
1 X3 Y,
Using Egs. (6.14) and (6.16) the displacement fields u(x, y) and v(x,y) can now be expressed in the
form of:
ux,y) = g'(x,y)C'u, = N"(x,y) u,
x,y) gT( y) ) T( y) 617)
v, y) = 9 (% y)Cv, = N (x,y) Vv,
with

Xo¥s = X3Y, XY —X\Y; XY, =Xy,
yz_ys yS_yl yl_y2
X3 =X, X, =X X, =X,

Cl=—
2A

where 2A=det [C]= (X2Y3—X3Yy2)- (X1Yy3—Xsy1)+ (X1y2—X2y1) =2 x area of triangle. The shape
functions can be found as:
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Xo¥3 = X53Y, XY —Xi¥Ys XY, =Xy,

_ 1
NT(X’y) - gT (xy)C t= ﬁ[]" X y] Y>—Ys Ys=Y1 Yi—=Ys (6-18)
Xs =X, X, — X, X, — X,
_(Xzys —X3Y,) + X(Y, —Y3) + Y(X; —X,) ]
Ny(x.3) (X,Y, — X )+x5A— )+ Y(X, —X,)
NOGY) =| Ny (x, y) | =| 22 ;;yl =X (6.19)
N, (X,
3(X y) (X1y2 — X2y1) + X(yl B yz) + y(xz - X1)
L 2A i

The general displacements within the element can be related to the nodal displacements using shape
functions:

—NIT
u=N,u, +N,u, +N,u,=N"u,

. (6.20)
v=N,v, +N,v, + N,v,=N"v,
Eq. (6.20) can now be written in matrix format as:
U,
Vl
u N, 0 N 0 N; O |u
= 2 ’ 21 or u(xy)=N.u, (6.21)
% 0 N, 0 N, 0 N;jv,
u3
Vs |

2. Derivation of the matrix B

The matrix Be has been defined for a general case in Eq. (6.8) and contains derivatives of the shape
functions.

2
OX
N 0O N 0 N 0
B,=L[N.]=| 0 L e ’ ’
oy|lo N, 0 N, 0 N,
0 0 (6.22)
| oy OX |
'N, O N, O N, 0
B.=| 0 N, 0 N, 0 N,
L le le N2y NZx N3y N3x

The derivatives of the shape functions for the triangular element can be obtained as:
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_le— —(yz _ys)_
N,, (X3 —X,)
N2x _ i (ys _yl) (623)
Noy | 2A1 (X, =X;)
Ny (1 —Y>)
_N3y_ _(Xz _Xl)_

Therefore the matrix Be is obtained for the linear triangular element as:

1 (yz - y3) 0 (ys - y1) 0 (yl - yz) 0
B.=— 0 (X3 —X,) 0 (X, —X3) 0 (X, —%;) (6.24)

(X3—X2) (yz_ys) (Xl_XS) (yS_yl) (Xz_x1) (yl_yz)

It can be seen that Be and therefore strains within the linear triangular element are independent of x
and y. For this reason, this element is often called the “constant strain triangle”.

3. Calculating the element stiffness matrix

The internal stress can be related to the external loads using the principle of virtual work for the
element. This leads to the equation for calculation of the element stiffness matrix.

k, = [ B{DB, dV =B]DB, At (6.25)

V,

e

where A and t are the area and the thickness of the element, respectively. Note that because Be and D
are independent of coordinate location (X, y), the integration over this element can be performed easily
and exactly.

6.4 Linear rectangular element in plane elasticity (Q4)

The linear rectangular element is the simplest rectangular element for planar analysis. The interpolation
function used to approximate variation of displacements within the element is linear with respect to x and
y. For simplicity, a Cartesian coordinate system is adopted where the axes x and y run along two of the
element edges, as shown in Figure 6-2. Therefore, this coordinate system is the local one. The origin of the
X-y axes is chosen for convenience to be at a corner of the rectangle but could be located at some other
points without affecting the procedure for calculation of the element properties. The element has nodes at
the four corner points, each node has 2 degrees-of-freedom u and v, corresponding to the displacements in
x and y directions respectively Figure 6-2. Thus, the element has a total of 8 degrees-of-freedom. The
displacement vector and the force vector are:

;
uez[ul v, U, Vv, U; Vv, U, v4]

]
fo=[p 4 P, G Py Q5 Py 4|
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Ty, v, q

V3, q3
Vg, q4
Uy, p4 Us, p3
4 3
A
B
V1, ql Vo, q2
U, P1 U P2 X, U, p
1 2 >

Figure 6-2 Four-noded linear rectangular element

Since each of these vectors contains 8 components, the size of the element stiffness matrix, ke, is 8x8. The
general procedure explained in Section 6.2 is employed here to calculate the stiffness matrix of the 4-noded
rectangular element. The node numbering and the Cartesian coordinate system shown in Figure 6-2 are
used here. The nodes are numbered in increasing order anti-clockwise. The coordinates of the nodes 1 to 4
are (0, 0), (A, 0), (A, B) and (0, B). The coordinate system shown in Figure 6-2 is a local one so that the
element stiffness matrix should be transformed to the global coordinate system before it can be assembled
into the global stiffness matrix.
1. Calculation of the shape function

The variation of the displacement components, u and v, within the element can be expressed as
complete linear polynomials of x and y:

u(x,y) =a, +a,X +a,y +a,xy=g" (x,y)a
V(x,y) =b, + b,x+b,y+b,xy=g" (x,y)b (6.26)
where
gxy) =[Lxyxy]',a=[a, a, a, a,]'
and
b=[b, b, b, b,]'

The general displacements within the element are related to the nodal displacements using shape
functions:

u=N,u +N,u,+N;u,+N, u,=N"u,
v=N,v,+N, v, +N, v, +N, v, =N"v,
N'=g'(xy)C™

with
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1 Xl yl lel
C= 1 X2 y2 X2y2
1 X3 ¥ XY,
1 X4 y4 X4y4
Therefore the shape functions are:
N, 1-x/A -y/B+ xy/AB
N /A —xy/AB
N=| 2|=gTxyct=| 07 (6.27)
N, xy/AB
N, y/B —xy/AB
The equation above can now be written in matrix format as:
U,
Vl
u2
u N, 0O N 0 N 0 N 0 ||lv
. 2 3 ‘ 2| or u(xy)=N.,u,
v| |0 N O N, 0 N, O N,|u,
V3
u4
_V4_
2. Calculation of the B matrix
The matrix Be can be obtained from N (equation above) as:
le 0 NZx O NSx O N4x 0
B.=| 0 N, O N, O N, 0 N, (6.28)
N, N, N, N N,, N N, N

ly 1x 2y 2X 3y 3x 4y

4x

where Nix, Niy are the derivatives of the shape functions with respect to x, and y, respectively. The
derivatives of the shape functions for the 4-noded rectangular element can be obtained as:

N, | [-UA+y/AB]
Ny, -1/B + x/AB
N,, 1/A-y/AB
N,, —X/AB
N, | | yAB
N, x/AB
Ny -y/AB

N, | | UB-x/AB |

(6.29)

Therefore the matrix Be is obtained for the linear rectangular element as:
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3. Calculation of the stiffness matrix

whereby (t) is the thickness of the element.

A B A
w5 3d,, +3d, —4d,, At 2d., B 3d,, —3d,
Zdng_ﬂ'dssx

4d11Z+4d33E

Y _Y 0
AB AB
0 X 0o Lf_x
AB B AB
X 1 y
AB AB B AB AB |

B A
-2d,, - 2d,, B

—-3d,, —3d,,

B A
2d,, A 4d,, B

B
33 K *3d12 + 3d33

B A
4d“X+4d33E

—-3d,, —3d,,

A B
-2d,, B 2dg, A

3d,, —3d;,

A B
—4d,, B +2d,, A

3d,, +3d,,

A B
4duE+4d33X

B A
2d, A 4d,, B

3d,, —3d,,

B A
-2d,, A 2d,, B

3d,, +3d,,

B A
—4d,, N +2d,, B

—-3d,, +3d,,

B A
4d11K+4d33§

(6.30)

It can be seen that Be and therefore the strains within the element are a function of x and y. The normal
strain exx varies linearly with y but not with x, while &yy varies linearly with x but not with y. The shear
strain varies linearly with x and y throughout the element, as can be seen from the form of the strain-
displacement matrix, Be, in Eq. (6.30)

In general, for plane stress or plane strain problems, the matrix D can be written in the form of:

(6.31)

This leads to the equation for calculation of the element stiffness matrix in the local coordinate system.

k.= [BI DB, dV=t[[B] DB, dx dy
Ve

(6.32)

The product of B] D B, has to be evaluated first and the components of the resulting matrix have to be

integrated over the area of the element. The final value of the stiffness matrix obtained from these
calculations is given by:

—-3d,, +3d;,

A B
—4d11§+2d33x

3d,, +3d,,
A B

-2d, —-2d,,—
1 B p

B
3d,, —3d;,

A B
2d,, B 4d,, A

—-3d,, —3d,

A B
4d,, B +4d,, N

Now the stiffness matrix needs to be converted into the global coordinate system. We note here that this
step was not required for triangular element, where we used the global coordinate system to calculate the
matrix. Here we used a local coordinate system oriented with the rectangle.




The transformation of the components of the stiffness matrix from the local coordinate system to the
global system is given by

k, = TK.T (6.33)

e

where k¢ is the stiffness matrix in the global coordinate system and T is the transformation matrix
defined as:

H' 0 0 0

0 H' 0 0

0 0 H' 0

0 0 0 H'

T =

and

. { cos(6) squ

| =sin(0) cos(0)

And 0 is the angle between the local coordinates and the global coordinates, as defined in Appendix B.
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Problems

Problem 6.1. Bar element

This problem is about the calculation of the stiffness matrix and the load vector of the simplest element in
Finite Element Modelling: the one-dimensional bar. The element consists of two nodes. The displacement
along the node occurs in the direction connecting the two nodes only:

uq X1 X2 U2
—=O C—>

AX

The displacement in any position of the node is given by

u
U (X):U1N1(X)+ u,N, (X) - [Nl(x) N, (X)]Ll:| =N*(x)-U°
2
The shape functions are given by the figure below
N()A
1 1
1
N N
0 >
X1 Xo X

1) Find the shape function Ni(x) as a function of x, x1, and x> and then construct the row vector Ne

N‘=[N;(x) N,(x)]

e

2) Calculate Be‘di
dx

3) Calculate the element stiffness matrix K® = I B°".E.B®.dx

4) Calculate the load vector Fe:I N°" (x) f(x)dx

X

5) Write down the element matrix equation k®-U® = F¢

Problem 6.2. Element stiffness matrix of a second order 1D bar

Calculate the element stiffness matrix of the 1D element with three nodes with a uniform load f along the
element.

u1=0, x1=0 Uz, X2=L/2 us, x3=L
C—— O —— )

L
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Problem 6.3. Beam element

Solve the problem of cantilever beam of the figure below using this finite element solution with one
element. Compare the deflection, bending moment, and shear force versus position, to the analytical
solution of simple beam, and the numerical solution of strand7 using one beam element. Discuss the results.

P=10 kN

Thickness=0.5m

—— —— —

J
|

A

Problem 6.4. Finite Element Formulation using triangular elements

Consider the plane strain triangular element for a y
displacement field [u(x,y) v(x,y)]" (in meters) shown in
the Figure. The Young Modulus is E=56MPa and the
Poisson ratio is v=0.4. (X3, Y3, U3, V3)

Let
(X1,y1) = (4,5) m
(x2,y2) = (0,5) m
(Xz,yz) =(2,25) m (X2, Yo, Uz, V2)

(X1, Y1, Uy, V1)

1) Derive the shape functions N1, N2, N3 using the matrices g'(x,y) and C
2) Derive the N® matrix

3) Derive the B® matrix

4) Derive the stress strain relation D

5) Derive the element stiffness matrix k®

Problem 6.5.

The data for a finite element analysis of a structure under plane strain conditions will be given to you. Use
the information to calculate:

@ The global stiffness matrix.

(b) The vector of applied nodal forces.

(©) The vector of nodal displacements.

(d) Displacements at the centroid of element 6
(e) Strains at the centroid of element 6
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() Stresses at the centroid of element 6

Problem 6.6.

A deep cantilever beam is subjected to a uniformly distributed traction at its free end. The dimension of the
beam is shown in the figure below, The Young's modulus, E (MN/m2), is equal to the sum of the numerals
of your SID and the Poisson's ratio, is equal to the last two numerals in your SID divided by 200.

1) Calculate the maximum vertical deflection of the beam using the constant strain triangular finite
elements. Use 2x6, 4x12 and 8x24 subdivisions to generate different finite element meshes to
approximate the deflection of the beam.

2) Compare the performances of the constant strain and the linear strain triangular finite elements on
the basis of the number of nodes (or degrees-of-freedom) used in a finite element mesh. For
example, use 1x3, 2x6, 4x12 and 8x24 subdivisions to generate finite element meshes of linear strain
triangular elements and compare the results with those obtained in section 2.

3) Comment on the distribution of stresses (in particular, normal stress, oxx, close to the beam support)
predicted by the finite element analyses using different element types and different number of nodes.

48 kKN/m?

Thickness=1m +
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Chapter 7

ACCURACY AND EFFICIENCY IN FINITE ELEMENT
MODELLING

In this chapter we will introduce the isoparametric formulation. This is probably the most important
contribution to the field of finite element analysis during the past 40 years. It includes higher-order elements
of arbitrary shape (included curved shapes) that are relatively easy to implement into a computer program.
The isoparametric formulation is used in most commercial packages. The term isoparametric (same
parameters) is derived from the use of the same interpolation functions to define the element’s geometric
shape as are used to define the displacements within the element. In this chapter, we introduce the basics
of this formulation and its implication in accuracy in modelling.

7.1 Accuracy and efficiency of linear triangular elements

The linear element is the basic planar element and one of the first elements developed and used in practice.
As noted previously, the strains and stresses are constant over the entire area of one element. Therefore, a
high degree of mesh refinement is required where significant strain gradients exist.

Consider two constant strain triangular finite elements shown in Figure 7-1. Assume that only one node of
element b is displaced while other nodes are fixed. Then element b is subjected to non-zero strains and
stresses, which are constant over the area of the element, while strains and stresses within element “a” are
all zero. An infinitesimal element at the boundary of the two finite elements, the shaded area in Figure 7-1,
is not in equilibrium. There are obviously discontinuities in strains and stresses at the boundary of the two
elements. In view of this fact, it is necessary to use a fine mesh of these elements where high stress or strain
gradients are expected.

Figure 7-1 Discontinuity of stress and strain

The linear triangular element has the advantages of simplicity in its formulation. The strain-displacement
matrix B is independent of the coordinates. Therefore, the integration of the stiffness matrix IBTDB dv

imposes no difficulty. The main limitation is in accuracy that can be overcome using high order,
isoparametric elements.
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7.2 Higher order triangular elements

Higher order elements have more degrees-of-freedom and usually give a more accurate representation of
the actual behaviour. Application of these elements ensures more accurate solutions to be achieved with
fewer elements.

It was shown in the previous section that the constant strain triangular element has a certain disadvantage,
particularly in regions of high stress gradients. One method of dealing with this problem is to use a very
fine mesh while still using the basic linear elements. However, an alternative approach is to use higher
order elements, elements for which higher order polynomials are used to approximate their displacement
functions. This can be done by specifying additional nodes for the elements, thus giving it more degrees-
of-freedom. The resulting elements have the advantage that fewer of them are required to achieve certain
accuracy. This is at the expense of greater computational complexity that can be easily handled in modern
computers.

Some of the higher-order triangular elements are shown in Table 7-1 together with the interpolation
functions used to derive the stiffness matrices of the elements.

Table 7-1 Planar triangular element types

Shape
Name of
the T3 T6 T9 T10
Element
Cubic Cubic
Shape Linear Parabolic
function (Non-standard) (Standard)

There are substantial advantages on using high-order element in finite element modelling Consider for
example the problem of a plate with a hole, See Figure 7-2. If one uses T3 elements, the hole is
approximated by a polygon, which produced a substantial error in the modelling of the boundary. The T6
element offers a great improvement in the representation of the boundary. This is because the isoparametric
formulation will fit a parabola passing to the three nodes of each side of the T6 element. As a result of that,
the circular hole will be replaced to a spline curve (piecewise curve consisting of parabolas) which
corresponds to an excellent approximation of the circular hole.
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Figure 7-2 Mesh representation of a plate with a hole: from left to right: Plate with a hole, mesh using T3
elements, and mesh using T6 elements

7.3 Accuracy and efficiency of linear rectangular elements

The linear 4-noded element is the simplest rectangular element for planar analysis. The normal stress and
strain in the x direction, oxx and &xx, vary linearly with y within the element and the normal stress and strain
in the y direction, oyy and &yy, vary linearly with x. Because the variation of strains and stresses are not
restricted to a uniform value over the whole element, the linear rectangular element is generally more
efficient and slightly more accurate than the basic linear 3-noded triangular element, although it is less
adaptable to bodies with a complex geometry. The triangular element has the advantage that it can be used
for bodies with irregular boundary shapes and its formulation is simpler than the 4-noded rectangular
element. Both the 4-noded rectangular element and the 3-noded triangular element were developed based
on the assumption that the displacements vary linearly within the elements and thus at element edges. It
follows that these two types of element can be connected to one another without any loss of compatibility
and can be combined to model a finite element mesh with a complex geometry in a planar analysis.

The 4-noded rectangular element has shown some deficiencies in finite element analyses. For example, it
is unable to represent accurately one of the most commonly occurring stress states, i.e., the state of bending
stress. This can be illustrated by subjecting a simple rectangular planar element to a pure bending stress as
shown in Figure 7-3. The top and bottom edges of the finite element remain straight under pure bending
moment. The approximation of the state of pure bending by the finite element, results in a fictitious prediction
of relatively large shear strains.

The unwanted shear strain causes the behaviour of the finite element to be too stiff. The effect of the
unwanted shear strain becomes significant for elements with large aspect ratio (a/b).
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Figure 7-3 Deformation under pure bending

Many these elements have to be used in order to achieve an acceptable accuracy in problems where bending
action is important or where a high stress gradient is expected. The use of a greater number of elements in
a finite element analysis usually means a longer computation time. Therefore, it is desirable to use higher
order elements in many practical analyses.

7.4 High order rectangular elements

Higher order elements have more degrees-of-freedom and usually represent a more accurate displacement
field, and therefore stress and strain field. Application of fewer elements of this kind in a finite element
analysis usually results in a more accurate solution compared with the results of an analysis obtained using
lower order elements.

To develop higher order elements, higher order polynomials are required in order to approximate
displacement functions for the elements. This requires additional nodes which results in more degrees-of-
freedom for the elements. Some of the higher order rectangular elements are shown in Table 7-2. The
functions used to interpolate the displacements of these elements are usually of the same order in the x and
y directions. However, this is not a strict requirement in developing the higher order elements, since it is
trivial to generate shape functions for rectangular elements using a different order of interpolation in the x
direction to that used in the y direction. This will result in a series of elements which have different numbers
of nodal points in the x direction to those in the y direction.

It should be noted that as the number of nodes in a finite element increases, calculation of the stiffness
matrix of the element becomes more complex. Some of the complexities arise from the parametric
multiplication of large matrices and the high number of integration operations. It is also possible increase
the accuracy of an element without increasing the nodes. For example, some commercial packages modify
the four nodes Q4 element to improve the performance. The modification consists in introducing an
additional bubble shape function that considerably decreases the numerical error during bending. As user
of commercial packages, you should be aware that there are many improvements of the formulation that
affect the calculations, and whose details are hidden to the user.
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Table 7-2 Higher order rectangular elements

Shape ° : :
Name of the
element Q8 Q9 QL2 Q16
Disp. function in Parabolic Parabolic Cubic .
xly direction (Non-standard) (Standard) (Non-standard) Cubic (Standard)

7.5 Coordinate transformation and numerical integration

The derivation of the stiffness matrix for any high-order element requires integrations of a high number of
functions over the area of the element. As the order of the interpolation function for the element increases,
integration operations become more complex if they are to be performed analytically. However, analytical
integrations may be avoided using coordinate transformation and numerical integration. One of the
advantages of numerical integration, as opposed to analytical integration, is that it can all be carried out by
the computer. Elements with curved boundaries, or non-rectangular quadrilateral elements can also be
easily developed and their stiffness matrices can be integrated without additional difficulty.

Summary of numerical integration

The term "Quadrature” is the name applied to evaluating an integral numerically rather than analytically.
There are a few methods available for numerical integration. However, the Gauss quadrature rule is the one
most often used in finite element analyses and is therefore introduced here.

Gauss quadrature rules are written for a finite integral over the interval [-1, 1] in each coordinate direction.
Integration of a function, f(n) in one dimension is expressed as:

1

[1(man=3 £(n)w (1)

-1

where n is the number of integration points (or Gauss points) selected for the integration, ni is the coordinate
for Gauss point i, and wi; is the weight for Gauss points. The coordinates of the Gauss points and their
weights are well known and some are given in Table 7-3 for various orders of numerical integration.

Table 7-3 Gauss points and weights for one-dimensional integration

Number of Coordinate Weight

Gauss points, n ni Wi
1 0 2

9 +1/+/3 1

_1//3 1

Jo.6 5/9

3 0 8/9

-Jo.6 5/9
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The Gauss quadrature rules are designed for cases where (1)) is a polynomial. A rule with n Gauss points
Is exact for a one-dimensional polynomial integrand of degree up to 2n-1. For example, an integral with 2
Gauss points gives no error for linear, parabolic and cubic polynomials. Gauss quadrature rules may also
be used for cases where the integrand is not a polynomial, but the result will only be an approximate one.

Integration of a function, f(n,u) in two dimensions over the area of a quadrilateral, i.e. over the interval [1,1]
for both n and p, can be expressed as:

H'—"_‘

1
If nu) dndp= Zf Mok ) (7.2)
-1

i=1

where 1 and p; are the coordinates for Gauss point i. The coordinates of the Gauss points and their weights
for two dimensions are given in Table 7-4. The two-dimensional quadrature rules are a simple
generalization of the one-dimensional rules where f(1, ) is a polynomial. A rule with n Gauss points is

exact for a two-dimensional polynomial integrand of degree up to 2\/ﬁ —1. For example, a one-Gauss point
rule is valid for a constant or linear function, a 4-Gauss point rule gives no integration error for a polynomial
up to and including a cubic.

Table 7-4 Gauss points and weights for two-dimensional integration

Number of Coordinate | Coordinate Weight

Gauss points, n ni Wi Wi
1 0 0 4
_1//3 ~1//3 1
+1/3 _1//3 1
4 ~1//3 +1/+/3 1
+1//3 +1//3 1

_Jo.e6 _Joe 25/81

0 -Jo.e 40/81

++/0.6 -0 25/81

_Jos6 0 40/81

9 +0 0 64/81

+/06 0 40/81

-o.6 +V06 25/81

0 +/06 40/81

+/06 +/06 25/81

Integration schemes for two-dimensional triangular elements can be found in most of the finite element
textbooks. It is recommended that an integration rule with 3 Gauss points is used for all triangular elements
and an integration rule with at least 4 Gauss points is used for quadrilateral elements.

Natural coordinates

In order to evaluate an integral over the area or volume of an arbitrary-oriented element, it is necessary to
transform the coordinates, as shown the Figure 7-4. In this procedure it is convenient to introduce a system
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of natural coordinates. A model element is chosen in the interval of [-1,1] in each direction, so that all of
the integrations required to form the element stiffness matrix can be performed using a quadrature rule.
Then the real finite element, in the coordinate system x and y, can be mapped onto the model element, in
the natural coordinate system, using a standard transformation.

Figure 7-4 Finite element in the natural coordinates (left) and in the Cartesian coordinates (right) the
elements shown are: Q4,Q9, T3, and Té6.

To transform the variables and the region with respect to which the integration is made a standard process
in integral calculus will be used which involves the determinant of the Jacobian matrix, detJ. For example

The integration of a function f over the volume V, of the element e becomes:

j f(x,y,2)dx dy dz = j j jf(n, w,0)detd dn dp dC (7.3)

V, -1-1

e

where 1, p and  are the natural coordinates corresponding to the actual coordinates of x, y and z, and the
Jacobian matrix is calculated as
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One-Dimensional Elements

Consider a linear 2-noded bar element shown in Figure 7-5-a. A model element of this kind can be defined
in the natural coordinate n, as shown in Figure 7-5-b. The coordinate of the model element in the natural
coordinate is chosen to range from -1 to +1. Therefore numerical integration rules can be easily applied.

1 2 1 2
o o o o
X | n
X=X1 X=X2 n=-1 n=+1
a- Real element b- Model element

Figure 7-5 Real and model linear one-dimensional elements

The shape functions associated with the nodes of the model element can be defined as:
N, =(1-m)/2

N, = (1+1)/2 (7:9)

The displacement at any point within the element can be obtained using the shape functions and the nodal
displacements at nodes 1 and 2, u1 and u respectively.

u(n)=N,(n)U,+ N, (n)U, (7.6)

The shape functions can also be used to find the x-coordinate of a point within the element, if the element
IS iso-parametric. The x-coordinate associated with a point within the model element can be obtained in a
similar form to the displacements:

x(n)=N,(n)x,+ N, (n)x, (7.7)

where x =[x, xz]T. For example, if X1 = 11m and x2 = 17.5m, the centre of the real bar element, which

corresponds to the centre of the model element at n=0, can be calculated as:

Ny =1/2

1(n=0)

Ny =112

Xe-0p = Nigeoy X1 + Nogoy Xo =1/2 x 11 + 1/2 x 17.5=14.25m

1m=0)

In calculation of the stiffness matrix of the element, it is necessary to find the strain-displacement matrix,
Be, and hence the derivatives of the shape functions with respect to real coordinate x, i.e
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oN, ©ON
B. = {5X 8_;} (7.8)

Since the shape functions are defined in terms of the model coordinate, 1, the derivatives of the shape
functions can be found using the chain rule:

N, _ON, on _ a((_))an 11

X onox on ox 2 0x/on (7:9)
N, 0N, on_0 on_1 1
X on ok an AT (7.10)

The quantity ox/on is the 1D version of the Jacobian matrix, J, and relates the derivatives of the shape
functions with respect to the two coordinate systems, i.e.,

N Ny ANy oN

o 0x 0x on

The Jacobian can be found by differentiating Eq. (7.7):

o _aN, +aNZXZ{@N1 GNZHM}:[_E 1}{"1}1/2 (7.12)
o w  m an )L2 2 |

where L is the length of the bar element.

Substituting the value of ox/on from Eq. (7.11) into Eq. (7.9) and Eq. (7.10), results in the derivatives of
the shape functions with respect to the real coordinate x and can be used to form the strain-displacement

matrix Be:
B, ={6Nl | 6N2}= oN, | ON, |54 ={_1’ l}gz{_l’ i} (7.12)
OX oX on on 2 2]L L L

The equation for calculation of the stiffness matrix can now be written in terms of the natural coordinate 7.

K, Aj B! DB, dx = Aj B! D B,detJ dn = AZBT DB, detd w, (7.13)

Xy -1

where Bei is the matrix Be evaluated at Gauss pointi. A one Gauss point integration rule, n=1, can be
selected for the numerical integration. The weight for the Gauss point is obtained from Table 7-3 as w=2.
Then the stiffness matrix is calculated as:

_AZ{ } ~1/L 1/|_]% _%{11 ﬂ (7.14)

Two-Dimensional Elements

A linear quadrilateral 4-noded planar element (Q4) is shown in Figure 7-6-a. A model element of this kind
can be defined in the natural coordinate system (m,p), as shown in Figure 7-6-b. The coordinates of the
model element in the natural system are chosen to range from -1 to +1 in both directions.
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Figure 7-6 Real and model linear quadrilateral elements

The shape functions associated with the nodes of the model element can be defined as:
N; =(1-m(1-wy4
N, =(1+n)(1-py4
N, =(1+n)(1+p)y/4
N, =(1-n)(1+py4
A point in the real element, with real coordinates x and y, can be associated with a point in the model

element, with natural coordinates n and p. The real coordinates of the point can then be obtained using the
shape functions and the natural coordinates of the point:

(7.15)

X(Mp) =N, X, + N, X, + Ny x5+ N, x, =N'X (7.16)
y(n’“) =N,y + N, y,+ Ny y;+ Ny, =Ny (7.17)

where x =[x, X, X, x,]"and y=[y, v, ¥, v, are vectors of the nodal coordinates in the x and y directions,
respectively.

The formation of the strain-displacement matrix, Be, requires the derivatives of the shape functions with
respect to the real coordinates x and y:
oN ON. ., ON

N _ g Mg N _ g2 N,
OX on 0y O

It is therefore necessary to define the Jacobian matrix for two-dimensional cases:

Oox/ /0
j_| Oxlon oylon (7.18)
oxlop  oy/ou
The determinant of the Jacobian matrix is:
OX OX
detJ :_Q__@ (7.19)

where the components of the Jacobian matrix can be calculated by differentiating Eq. (7.16) and Eq. (7.17)
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By substituting the derivatives of the shape functions with respect to j and p into the relations given by EQ.
(7.20), the components of the Jacobian matrix and hence its determinant can be obtained.

(7.20)

2, ON. 2, ON.
___J'Xl :E:___L)h
J_ i=1 8‘1 i=1
2, ON. 2, ON.
___J.Xi :E:___L)h
i1 Ol i Ol

For the general case of an arbitrary-oriented quadrilateral, detJ is a polynomial function of  and p.
Therefore, the value of detJ varies within the quadrilateral element and needs to be determined at individual
Gauss points.

The procedure of integration to form the element stiffness matrix k¢, can now be carried out with respect to
the natural coordinates, n and .

+1+1
k,=t][B, DB, dxdy=t[ [B,"'DB, detJ dn dy
y X -1-1
The integration can then be carried out using a quadrature rule.

+1+1 n

t[ [B,'DB, detJ dn dy =t B],DB,; detJ; w,

—1-1 i=1

Note that the stress 6 = DBu, in the quadrilateral element is not constant within the element; it is a
polynomial function of 1 and p so that it varies within the element. In most commercial codes, the stress is
evaluated only in Gauss points using the matrices Be,i used for the numerical calculation of K,. The stress

in any other point is calculated by extrapolating the values from the Gauss points. In is therefore a good
practice to assume that the stresses at the Gauss points are approximated, and that the error increases as the
point departs from the Gauss points.

7.6 Numerical error in the isoparametric formulation

The finite element solution provides only an approximate solution of the problem. Let say that U, (X) is

the exact solution, (which is not always available due to mathematical complexity), and U, (X) the

numerical solution of the finite element analysis. The numerical error of the finite element approximation
is defined as

BITON(X) = [Uqaey (X) = Uy (X))
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Since the isoparametric formulation involves few approximations, there is a numerical error that you need
to be aware when taking conclusions from the numerical results. From this numerical error we can
distinguish three different sources:

1. Domain approximation error, due to approximation of the boundary of the domain by a linear
(T3,Q4), quadratic (T6, Q8), or higher order polynomials.

2. Approximation error, due to approximation of the solution by piecewise polynomials (shape
functions). This error is decreased when the order of the element is higher.

3. Computational error, due to the use of quadratures in the calculation of the integrals to evaluate the
stiffness matrix and the load vectors.

Figure 7-2 shows an example of the domain approximation error: the mesh with T3 elements approximate
the circular boundary by a polygon, leading to a large domain approximation error. Replacing the element
from T3 to T6 leads to a considerable decrease of this error, since the circular boundary is well
approximated by a spline curve. The advantage of the use of higher-order elements is that curved boundaries
of irregularly shaped bodies can be approximated more closely than using simple straight-sided linear
elements.

The approximation error, due to approximation of the solution by piecewise polynomials (shape functions),
can be decreased when the order of the element is higher. In general, higher-order element shape functions
can be developed by adding additional nodes to the sides of the linear element. These elements result in
higher-order strain variations within each element, and convergence to the exact solution thus occurs at a
faster rate using fewer elements.

The computational error, resulting from approximating the integral by quadratures, is produced by the
coordinate transformation from the actual element to the natural element. Elements that are heavily
distorted from its natural element usually produce large computational error. Some finite element codes

allow measuring this distortion by using a normalized Jacobian J, which ranged from one for perfectly

shaped element to O for heavily distorted element. As finite element user, you should avoid element whose
normalized Jacobian is too small. The Figure 7-7 below, for example shows two different meshes of a
circular area. The left one has very elongated element at the centre that produces large computational error.
In the right one the elements are close to squares, which minimized the numerical error of the calculation
of stiffness matrix.

NOT DESIRABLE DESIRABLE

Figure 7-7 Real and model linear quadrilateral elements. The arrow at the left figure shows one of the
heavily distorted elements.
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Basically, the quality of the mesh will define the accuracy of the finite element calculation. The mesh can
be coarse (have few elements) or refined (have many elements). It is not a general rule that refining the
mesh will reduce the numerical error, and in some cases, it is better to increase the order of the elements.
Refining a region of the domain can be dangerous, since it can lead to incompatibilities: it means, nodes in
one element that are not connected to the neighbour element. In these cases, we observe spurious
discontinuities in the finite element solutions. To avoid discontinuities, it is recommended to use transition
elements that connect the coarse region with the refined one, see Figure 7-8.

Figure 7-8 Transition elements using Q4 elements allow to connect a coarse mesh (top) with a fine one
(bottom)

The way we impose boundary conditions can also lead to sources of errors. Stress singularities appear when
a load is concentrated in a single node, and it is recommended to distribute the load in few nodes before
mesh refining. Finally, unrealistic concentration of stresses can appear in corners of the mesh and it may
be necessary to smooth the boundaries or the boundary conditions to reduce the numerical error.
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Problems

Problem 7.1. Isoparametric formulation of high-order 1D element

Derive the shape functions of the thermally
loaded, master, one-dimensional element with

three nodes and a scalar variable T(n) T T -1 0 1
n

Problem 7.2. Numerical error in isoparametric formulation

A mesh of T3 elements are proposed for calculation of the stress in a plate with a hole. Discuss the three
possible causes of numerical error in the finite element analysis using this mesh.

Problem 7.3. Thin plate with a hole

For the finite element analysis of the plate with a hole, three different meshes are generated, see Figure 2.
The symmetry has been considered and thus only a quarter of the model is needed. All the elements are
Quads.

800 mm

E=200,000 MPa

v=0.3
1.0 MPa .0 MPa

400 mm

OE
N

LT
T

111



1) Determine all boundary conditions of the quarter domain.
2) What of the three meshes of Figure 2 will produce the most accurate stress calculation around its
peak value? 1. Justify the response listing the errors produced in each mesh.

*Mesh 1 has small squared element at the zone of stress concentration. Mesh 2 is not a good option
due to mesh incompatibilities; Quality of Mesh 3 is low.

Mesh 1: 232 Quad8 elements Detail of mesh 1

Mesh 2: 849 Quad8 elements Detail of mesh 2

Mesh 3: 576 Quad8 elements Detail of mesh 3
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Problem 7.4 Pre-stressed concrete beam

A part of a pre-stressed concrete beam is shown in the figure below. The beam has a cross section area of
1m x 2m and a total length of 25 m. The pre-stressing cables apply a total end force of 24000 kN over an
area of 0.8mx0.4m. The Young’s modulus and Poisson’s ratio for the concrete material is 30 GPa and 0.25,
respectively.

You are required to find regions of high transverse tensile stress in the concrete beam due to the external
compressive force of the cables. Prepare a suitable mesh to model the beam for a finite element analysis.
The maximum number of nodes that you may use is limited to 2000. Solve the problem and answer the
following questions:

1- Is aplane stress or plane strain analysis more appropriate? Give reasons.

2- Discuss the degree of mesh refinement that is desirable in the several zones of the beam. Do you need
to model the whole beam in order to find the tensile stresses?

3- Discuss the advantages of the finite element type that you have used in the analysis. Give the total
number of nodes and elements used in your final analysis.

4- At what distance from the ends may the compressive stresses be expected to become approximately
uniform?

5- Draw (or plot) the region where the transverse tensile stress is greater than 1000 kPa. Give the extent
of the region from one end.

74
0.8m
‘%
0.4m E
0.8m
25m

‘]-.O\mA
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Chapter 8
FINITE ELEMENT MODELLING OF SCALAR FIELDS

In the previous chapter we presented the finite element solution of vector fields. In these kinds of problems,
the variable we want to solve is a vector in the three-dimensional space. This vector usually corresponds to
the displacement of the structure. In this chapter we will concentrate in scalar fields. For these problems
the unknown variable is a scalar that can represent temperature, excess of pore pressure, hydraulic head,
torsion, etc. Luckly for us, all these problems share the same mathematical structure, and the corresponding
governing equations are the so-called heat equation. We will formulate the heat equation in its strong and
weak form and provide finite element solutions for static and transient problems.

8.1 Formulation of heat equation

Let us start with the strong formulation of a heat conduction problem. Here the unknown variable is the
temperature, which is given in terms of the position. The kinematic equation corresponds to the temperature

gradient, for 3D flow it is given by
or or or
VT= -, —, — (8.1)
oXx oy o1
We are introducing here the nabla differential operator (nabla = arrow in Arabic) which is useful to
formulate partial differential equations in complex form
v :[i, ﬁ ﬁ] (8.2)
ox oy oz
The constitutive equation corresponds to the Fourier law, which states that the flow of heat is proportional
to the gradient of temperature by a factor k that is the conductivity:

q=-kVT (8.3)

Then the balance equation corresponds to the principle of conservation of energy. In 1D, It states that the
heat generated in an infinitesimal element Q(x)AxXA equals to the heat that flow in the boundaries of the
element A(q(x+Ax) — q(X)), written in differential form for 3D flow:

oq, , 99y, oq

zZ = . Tqg =
x oy o Qxy,2) .. vg=Q (8.4)
Putting all equation together we get the same equation as before
o(, 0T\ of, o) adf,adl
(g Rl R
X\ ox) oy\ oy) oz\ oz

Similar equations are derived for seepage flow by changed temperature by hydraulic head, and Q(x,y,z) by
the amount of water generated inside the elementary volume. In both cases the fixed boundary condition
corresponds to a fixed heat/temperature at the extreme, and the free boundary condition corresponds to
impermeable/isolated boundaries.
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Using the nabla operator in Eq. (8.2), the above equation can be simplified as:
V' (kVT)=-Q(xy.2) (8.6)

All problems that satisfy this differential equation are known as scalar problems, since the unknown
variable “T” is a scalar. There is a wide range of scalar problems in engineering, such as heat flow,
conductibility, pore pressure, and torsion. The most general form of the scalar problems is

VT (kVT)+Q=0 (8.7)

where K is a matrix in the most general case. Since the unknown field T(x) of these problems is a scalar
function, we will refer to these problems as scalar field. The Table 8-1 below shows a list of problems that
can be solved using scalar field formulations.

Table 8-1 Variables involved in the heat equation

Field Problem Unknown (T) Material parameter (k) Known (Q)
Heat Conduction Temperature Thermal conductivity Internal heat source
Seepage flow Hydraulic head Permeability Zero
Incompressible flow Stream function Unity Twice the vorticity
Elastic torsion Stress function (ShearModqus)i Twicet\tlcie;trate of
Electric conduction Voltage Electric conductivity Zero
Gas diffusion Concentration Diffusivity Zero
Electrostatics Permittivity Charge density Zero
Magnetostatics Magnetic potential Reluctivity Charge density
Infgg?ﬁ;?zir?le Pressure (Film thickness )’/viscosity Lubricant supply

Seepage is the flow of a fluid through soil pores. Dams are geotechnical examples where seepage occurs.
They are designed to retain water to consumption or generation of electricity. In the design is important to
know: 1) the water lost by percolation, and 2) the stability of the surrounding soil and retaining walls.

8.2 Seepage Theory
The theory of seepage is based on the determination of the head loss in the water. The head is defined as
the energy density dividing the unit weight of water:
2
h=f UrAEREAN U, 8.9)
Vw Yw Yw
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Where u is water pressure, Py is the density of water, g is gravity, z is the height with respect to a reference
datum, v is the velocity, and Yw is the unit weight of water. The kinetic energy term 3, 5 /2 is neglected

in seepage analysis. Since the flow in soils is highly viscous, there is an energy loss along streamlines. The
head loss ah=h_. —h,, IS related to flow rate by the Darcy law

initial

Ah
= 8.9
Q=KkA (8.9)

Where Q is the flow rate (volume/time), A is area of the cross section of a soil element, Ah is the head
loss and AX is the length of the soil sample, Kk is the permeability that is obtained from experiments. The

flow rate Q is related to the seepage velocity v by the equation Q:VA . Replacing into the above equation
we obtain

dh

=k— 8.10
dx (8.10)
In two dimensional flow, the seepage velocity is given by the following equtions
v,=kd v -k (8.11)
OoX

The mass balance equation states that the water that flows outside of an area element correspond to the
water expelled from the voids of the soil. This equation results in

ov
o Ny Py (8.12)
ot ox oy
Putting these equations together we obtain that the head satisfies the heat equation
2 2
kaf+kah %, g (8.13)
OX oy ot

After solving this equation, the flow along a surface perpendicular to the y axis can be calculated as follows

q Iv da_—Ik—d D

= _Z AN AvD - Z kAhD (8.14)
AX i-1

Ay=AX

:kAHD% [m°/s]

h

8.3 Consolidation Theory

Consolidation is a process by which soils decrease in volume. It occurs when stress is applied to a soil that
causes the soil particles to pack together more tightly, therefore reducing its bulk volume. When this occurs
in a soil that is saturated with water, water will be squeezed out of the soil. Consolidation produce settlement
in the soil, Initial settlement occurs under isochoric (undrained) conditions. Uner this condition, the I=initial
excess of pore pressure equals the mean stress due to the structure. As the time passes the settlement
increases as excess of pore pressure dissipates, and the final settlement is achieved when the all the excess
of pore pressure dissipates.
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The equation of the excess of head is given by

kazAh O°Ah  OAe,

+k + 0 8.15
oX? oy? ot (6.15)
The Bernoulli Principle for the excess of head is given by
Ah =£+A2z& (8.16)
Y Yw

The constutive Behaviour and Terzaghi principle is given by
Ae, = m,Ac’=m, (Ac - Au) (8.17)

Where here we define M, as coefficient of volume decrease. This coefficient depends on both initial voids
ratio e and initial effective stress ¢ '. The mean stress is given by

0= (640, 70,.) (8.18)

Putting all together we get the consolidation equation, which is also a heat equation

2 2
m
0 Azu +6 Azu _ . r9Au _6Ac] ¢,= vw (8.19)
OX oy ot ot k

The above eqution also correspond to the heat eqution. The intial condition are generally given by

c,[

Au(x,y,t =0) =Ao(x,y) (8.20)

And the boundary contitions are Au=0 for permeable boundary and v'in=0 for impermeable boundaries.

8.4 Weak formulation of the heat equation

We aim here to formulate the finite element equation of the heat equation. Let us assume that V is the
domain of the problem. The conservation equation of the problem is

Vig=Q inV (8.21)

The boundary of the domain is split asA=A, UA,, where A is the part of the boundary with essential
boundary conditions, and Az is the boundary with free boundary conditions

vig=Q inV T=0 in A, and gq'n=g(x) in A, (8.22)
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Figure 8-1 Domain of the heat equation problem

The weak form of the governing equation is obtained by multiplying the equation by the test function T*(X)
and integrating over the domain

jv T )V qdV = jv T (x)Q(x)dV (8.23)

Now we use the following identity that corresponds to the derivative of a product in a high dimensional
space

VI(Tq)=TV'q+(VT)'q (8.24)
Replacing Eq. (8.24) into Eq. (8.23) we obtain
jva(T*q)dv— jv (VT qdV = jVT*(x)Q(x)dv (8.25)

Now we need to use the well-known divergence theorem in calculus. It states that for any continuously
differentiable vector field f in a compact volume V with a piecewise smooth boundary A, we have

T _ T
jvv fdV = jAf ndA (8.26)
Applying the divergence theorem to the first term of Eq. (8.25) with f = T*q we obtain
jA T'q"'ndA — jv (VT qdV = jv T (X)Q(X)dV (8.27)

This is the weak form of the heat equation.

8.5 Finite element formulation

Now we start from the weak form Eqg. (8.27) on an element with volume V. as shown in Figure 8-1
* T * *
jve (VT ) qdV = jAe T'q'ndA- jve T (X)Q(X)dV (8.28)

The scalar field T(x) is expressed in term of the values of the field at the nodes Te using the interpolation
function

T=N,T, (8.29)

ee
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In the same way, the test function is expressed in terms of the nodal values using the interpolation functions

T =N,T, (8.30)
Replacing into equation above
[B.kB.dV T, = [N,"QdV - [ N,"q"ndA (8.31)
V, Ve A,
%/—/
Ke fe
The Be matrix is given by
B, =VN, (8.32)

Eq. (8.32) corresponds to the finite element formulation of the scalar problem

8.6 Boundary conditions

There are two types of boundary conditions in the heat equation: The essential boundary conditions appear
when the value of T is known in the boundary. In this case the temperature is specified at the nodes of the
finite element model. This boundary condition appears when there is transference of energy between objects
that are in physical contact. Thus this boundary condition is also known as heat conduction:

T = Tref (833)

Here Trer is the temperature of the environment. On the parts of the boundary where the temperature is not
known explicitly, one of the following boundary conditions should be specified:

Heat convection: this happened when the transfer of energy between an object and its environment is due
to fluid motion

q'n=h (T-T,) (8.34)
Heat radiation: which is produced when the transfer of energy via electromagnetic radiation
q'n=oh, (T*-T} ) (8.35)

Note that this boundary condition has a non-linear dependency with the temperature, and thus it requires
non-linear analysis for numerical solution.

8.7 Transient heat transfer analysis

Here we will formulate the heat equation when the problem depends on time. In heat problems, this
happened when the system is cooling or heating so that it is not in equilibrium with the environment. The
balance equation of this problem is nothing more that the law of conservation of energy. It states that the
heat energy generated per unit of volume Q is equivalent to the time variation of the internal energy in the

system U plus the heat flow Vg
Vig+ %U =Q (8.36)

The statistical mechanics tell us that the internal energy of a system is related with its density p and the
specific heat ¢ as

U=pcT (8.37)
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Replacing this equation into Eq. (8.36) we obtain

vVig+ pC% =Q (8.38)

The weak form can be formulated similar to the static analysis in the previous Chapter. First we multiply
by the test function T and then integrate over the domain,

oT | « «
j[qu ¥ pC—}r dv=[Qrav (8.39)
Ve at Ve
Integrating by parts
T « 0T .
-[[vT] adv+ [TpC—-dv = [ T'QaV (8.40)
A A ot E
and using the interpolation function to relate the field variable with its values at the modes
T=N,T, (8.41)
We derive the element matrix equation
keTe = fe+pce dc-ire
t (8.42)

C.= [NNAV k, =[BkBdV f, =[N QdV
A vV, vV,

The transient heat solver solves this problem given the initial conditions, using a time sequence algorithm.
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Problems

Problem 8.1. Thermal load

A glass window of an Australian house consists of a single layer of T, =20°
glass of 4 mm thick with thermal conductivity k =0.80 W/m°C.

Determine the temperature at the inside and outside surface of the

glass and the steady rate of heat transfer (in W/m?) through the

window. Assume that the inside temperature is 20° with coefficient

of thermal convection hin= 10 W/m?°C, and the outside temperature

is T =0° with hoy = 30 W/ m?°C

Problem 8.2. Thermal load 2

The Figure shows the cross section of a plate Isolated
with temperature T(x) heated from the top with
a solar radiation of 500 watts/m? (watts=J/s).
The thermal conductivity k=54 watts/m°C.
The temperature is kept constant (To=30°C) at
the left boundary, and the right boundary is
insulated. The length of the steel plate is
L=2m, its wide is W=5m and its thickness is
6=0.0lm

To

fEisEssesesens

1) Calculate the heat produced in the plate (Q) in watts/m?

2) Derive the governing equations for the temperature in the steady state. Neglect heat loss at the bottom
of the plate

3) Find the analytical solution of the temperature in the steady state.

4) Find the governing equations the temperature by assuming that the right boundary exchanges heat with
the environment of T,=10°C with a convection coefficient of h=11 W/m?C.

5) Solve the governing equations of question 4.

Problem 8.3. Thermal triangular element
Consider the triangular element for a temperature field T(x) Y

(in °C) shown in the figure. The conductivity is k=40 W/(m
]
© (X3, ¥3, T3
Let
(X2, Y2, T2)
(X1,y1) =(2,1) m
(X2,y2) =(5,3) m
(x3,y3) = (3,4) m (X1, Y1, Ta)
X
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1) Derive the shape functions
2) Derive the B matrix
3) Derive the element stiffness matrix k®

Problem 8.4. Finite different solution of the transient heat equation
Find the finite different equation of the heat Equation

d’u ou
¢ = E_Fxt
ox* ot (D

Problem 8.5. Finite element solution of the transient heat equation
Find the finite element solution of the transient heat equation

d’u ou
c— = —-Fxt
X2 ot (D

122



Chapter 9

FINITE ELEMENT MODELLING OF STRUCTURAL
PROBLEMS

Structural mechanics is understood in this book as the theory of deflection of beam and plates. In principle,
you can calculate the deformation of all the members of a structure by defining their 3D geometry and
solving the displacement field using 3D solid finite elements. In practice, it is more convenient to reduce
the dimensionality of some members and in this way reduce the complexity of the problem. A column of a
building for example, can be reduced to a 1D element using beam theory. In this case its full 3D
displacement is replaced by its deflection, its curvature, and its torsion along its length. A concrete slab can
also be considered as a two-dimensional structure where in each point we define its deflection and its
curvature radii. In this chapter we will focus in the calculation of deflection of beams and plates.

9.1 Euler Bernoulli beam theory

The Euler-Bernoulli beam theory is a simplification of the linear theory of elasticity used to calculate the
deflection produced by applied loads. As any theory, it has a certain number of simplifications:

(1) The loads are perpendicular only;
(2) The deflections are small; and
(3) Plane sections of the beam remain plane and perpendicular to the longitudinal axis.

Derivation of the bending equation of the Euler-Bernoulli theory will be presented here.

A WX

M(X)C >M(X+AX)

Q)

Q(x+Ax)

Figure 9-1 Kinematic Variables (left) and free body diagram (right) of the Euler-Bernoulli beam.

Kinematic equations

The rotation of the infinitesimal element is related to the deflection at their edges (Figure 9-1) by:

0= U(X+Ax) —u(x) _ du
) Ax dx

9.1)

123



The derivation of this expression used the assumption that the rotations are small enough so that
0 ~sinf ~ tand .

Curvature is defined as the inverse of the radius of curvature p of the beam (Figure 9-1 ). The exact
calculation of curvature is obtained from differential calculus:
1 d’u/dx®
S | _ 9.2)
P [ 1+(dufdx)’ ]

Since 6=du/dx is assumed to be much smaller than one, the curvature can be approximated to:

Ldu_do 9.3)
dx? dx
Thus we obtain the kinematic relation between deflection and curvature
d?u
e (9.4)

Balance equation

The free body diagram of the infinitesimal element is shown in Figure 9-1 . Q(X), M(x), W(X) represent the
shear force, the moment, and the force per unit of length at point x. For this problem we need to use both
balance of forces and balance of moments. By balancing the forces in the y-direction we get

Q(x+Ax) — Q(x) + W Ax =0 (9.5)

The above equation results into

@Q_ _w (9.6)
ax
Now we use the balance of angular momentum
Q(X+AX)A—2X + Q(X)%‘FM(X"‘AX) —M(x).=0 9.7)
The last term vanishes since it is a second order infinitesimal, and the resulting equation is
dMm
™M_ g 98)
dx
Eqg. (9.6) and Eq. (9.8) can be combined to obtain the balance equation of the bending problem
2
dM_ w (9.9)
dx

Constitutive relation

This is the relationship that connects moments to curvature. This relation can be obtained using elasticity
theory as follows

au d(0y) o ,
M=— [vo. da=—[vEe. da = —[vE % da=[yE 2O 4a= L [ 24 9.10
{ycxxa J\y £, da J\y ~ aiy da dxiy a (9.10)
%—J
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In the first step we assume that the axial stress in the direction of the deflection is negligible in comparison
with the axial stress in the direction of the beam. In the last step we assume that the the line normal to the
mid-surface rotates an angle 6 after deformation. The moment of inertia of the cross-section area is defined
as

I:J'yzda (9.11)

Replacing Egs. (9.3) and (9.11) into Eq. (9.10)the constitutive relation can be written as:
M=E I « (9.12)

Finally, if we combine the constitutive equation with the kinematics and the balance equations we obtain
the governing equation of the problem:

d? [ _ du
—| El— [-W=0
dx? ( dx2] (9.13)

9.2 Calculation of the stiffness matrix of flexural beam elements

The procedure explained in Section 3.4 is extended here to calculate the stiffness matrix of a flexural beam
element. Beam elements are the basic members of rigid jointed frames. We will assume that you are familiar
with beam theory. If not, you should study the Section 8.1 before reading this section.

The beam element considered here has two nodes, a uniform cross-section A, and is loaded by forces and
moments at each node as shown in Figure 3-4. The beam is assumed to be slender so that the effects of
shear deformations can be ignored. The effects of axial forces and deformations are also ignored here. The
sign conventions for the moments and the shear forces are shown in Figure 3-4.

Vi, 01 V2, 02
91, Ml 621 M2
y
1 L 2
X - ——

Figure 9-2 Two-node beam element

We summarize here the steps to construct the element matrix equation:
1. Local coordinate and node numbering system

The node numbering and coordinate system shown in Figure 3-4 may be used for the element where the
y-axis is normal to the axis of the beam. The number of nodes is nne = 2, the number of degrees of freedom
per node is dof = 2, that is a deflection normal to the beam axis, v, and a rotation about the z-axis, 0.
Therefore, the total number of degrees of freedom for the element is ngor=nnexdor = 4. The nodal forces
associated with the rotation and deflection of the beam at each node are a moment about the z-axis, M, and
a shear force in the y-direction, g. The size of the displacement vector, ue, and the element force vector,
fe, is 4 and the size of the element stiffness matrix, Ke, is 4x4.
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q, Ki Ky Ky Ky [ vy
M, _ Ky Ky Ky Ky || 6 (9.14)
*P Ky Ky Ky Ky ||V,
M, Ki Ki Kio Ky ][0,

2. Displacement function

The variation of the transverse displacement can be approximated by a polynomial function. The

polynomial function must contain one unknown coefficient for each degree of freedom:
V(X) =a, +a,X +a,x" +a,x° (9.15)

v =[1 x x* X’][a, a, a, a,]" '

where a; to a4 are the unknown coefficients. The rotation at any point can be expressed as 0=dv/dx,
thus:

0(x) = dv/dx = a, +2a,x +3a,x”

(9.16)
0(x)=[0 1 2x 3x°][a, a, a, a,]"

Therefore, the "displacements™ at any point along the beam can be obtained from Eg. (9.15) and Eq.

(9.16) as:
vi |1 x x2 x°
0 0 1 2x 3x°
The matrix f(x) and the vector a can be defined for the beam element by:

e G0 1 ox o xX
g(x){gl(x)}{o 1 2x 3x?

1

2 (9.17)

3

D v O

4

}az[al a, a, a4]T (9.18)

Relate displacements within the element to the nodal displacements
The general displacements within the element can be related to the nodal displacements as:

v(x) = g"(x) Cu, (9.19)
10 0 0
c_|9t)|_ |01 0 0 (9.20)
9g(x,)] |1 L L D
0 1 2L 31

126



C'= (9.21)

Thus the shape functions can then be calculated by:

1 0 0 O

0 1 0O O
N =g'C’=[1 x x* x*]|=2 2 3 1 (9.22)

>’ L L L

2 1 -2 1

[EREEE

This results in
3 2 2 x> 3 2 x? X3

N(X)=|1l-=x*+=x3, x——x?+2, = x?-—=x3, -2+ 9.23
(){ ENE L- e L LZ} (5:23)

. Strain-displacement relationship:
The "strains™ g(x) at any point within the element can be related to the nodal displacements ue as
follows:

g(x) = Bu, (9.24)

The only strain that need to be considered is the curvature about the z-axis. For the beam considered here,
all other strains such as shear strain and axial strain are assumed to be zero. The curvature at any point is
defined as: e(x)=d?v/dx?. Therefore, the matrix B in Eq. (9.24) is defined as:

B=[ —d’g; (x)/dx* ]C* = [0,0,—-2,-6x] C" (9.25)

(9.26)

1

6 1x 4 6x 6 1x 2 6x
2 2L K o L o

. Stress-strain relationship

The “stress” for the beam element, which corresponds to the “strain” or curvature of the beam, is the
internal moment. The moment at any point within the beam can be related to the curvature as:

2
M(X) = — El % 9.27)

Therefore, the stress-strain relationship is:
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o(x) = De(x) = EIBu,

6. Relate the internal stresses to the nodal loads
Based on the principle of virtual work the stiffness matrix was obtained as:

k. =[ B'DBdV
L L
k, =A[BT EIBdx=EIA [B'B dx
0 0
36 144x  144x? 24 84x  T2x? 36 144x 144x? 12 60x  72x* |
[ L L L L T L LR EN T
24 84x+72x2 16 48x+36x2 24 | 84x 72x* 8 36x+36x2
N 26 X _gaeeX © 90X
K - AElj I N O E N IS e N S
: o| 36 144x 144x® 24 B4x T2x® 36 144x 144x* 12 60x 72X’

12 60x 72x° 8 36x 36x2 12 60x 72x° 4 24x  36x°
[ER T R T T R T T R TR R

Performing the integral in each element we get:

[ 12EI 6EI 12El  6EIl |

E ENE L2

6El 4EI  6El  2EI

2 2

Kk —A L L L L
12El  6El  12El 6EIl
BFEE T

6El 2El  6El  4EI
L2 L L2 L |

The stiffness matrix of the beam element is symmetric, as expected.

TE E R TR ERNTINT

dx

(9.28)

(9.29)

(9.30)

(9.31)

(9.32)

The final step is to calculate the nodal load vector assuming that the distributed load is constant along the

beam, f(x)=w The nodal forces for the beam are given by:
L
f = j N (x).f(x)dx
0

Thus
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1—%x2+£x3 L-L+E wk
L L 2 2
2 , L2 212 L] |wlL?
T 2 3 4| |12
f, =w dx=w =
: ! 3., 2 L wlL (9.34)
— X ==X L-—— —
L L 2 2
x> X L2 L2 wL?
- 4+ N T —
LB ] 3 4 ]|l 12
The element matrix equation of the beam becomes
[12EI  6El  12El 6El | wL
L3 LZ L3 LZ 2
6El  4El  6El 2Bl ||Vi| |wl®
L2 L 2 L |9 12
A -
(1Bl BEI 12EI  6EI||lv,| |wL (9:35)
L® 2 L L* |, 2
6El  2EI  6El  4EI wL2
L L L L 12 |

9.3 Plate bending theory

Plate bending theory, as well as beam theory, is a degeneration of the 3D classical continuum theory. It is
assumed that lines normal to the mid-surface of the plate before deformation remain straight and normal to
the mid-surface after deformation. This assumption reduces the problem from 3D to 2D, but the rotation of
the line involves additional degrees of freedom

A

Figure 9-3 Formulation of the bending of a plate compressed by a loading force from the top.
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The book of Timoshenko (Plates and Shells, McGraw-Hill) provides an excellent introduction to the theory
of plates and shell. The book of Logan (first Course in the Finite Element Modelling, Cengage Learning)

provides also a simple and detailed introduction. Here we just summarise the main concepts.

We define a shell element (Figure 9-3) as a combination of a plate element and a plane stress element. The
plane stress element can be deformed only in the parallel direction to the plate. The deformation of the
plane stress is defined by u and v. Each point of the plate element has a perpendicular deflection w and two
rotation 6x and 0y. We assume that the moments per unit length, My, and My, are positive if the plate is
compressed from the top. The curvature kx and ky are positive if the plate is convex downward. The
thickness t, Young's modulus E and Poisson's ratio v of the plate are constant. The variable w is the

transverse (z-direction) deflection of the plate mid-surface.

No stiffness

Ox

Shell element Plate element

Figure 9-4 The shell element is a combination of a plate element and a plane stress element

Plane stress element

The kinematic equation of the plate element corresponds to a 2D generalization of the beam theory in

Section 8.1. The curvatures are defined by

0*wW 0*w o*w
S A v A
y

K

which can be written in the matrix form

The constitutive equation comes from the elastic analysis of the plate. The final result is
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M 1 v 0 K,

x 3
M [=—" [v1 o || .M=Dk 9.38)
12(1—v?)
Xy 0 0 %(1-v)] x,

The combination of the balance of linear and angular moment equation leads to

OM. _O°M, O'M
x4p— Y4 Y=_Q . -L'M=
ox*  oxoy oy Q Q (939)

9.4 Finite element formulation of plates

We introduce here the rectangular plate bending element with 12 degrees of freedom as proposed by
Melosh. This is one of the oldest and best-known elements for analysis of plates. The plate, shown in Figure
9-5 has 4 nodes. At each node we have tree degrees of freedom: deflection w and rotations 6x and 0y.

Figure 9-5 Melosh’s element with 4 nodes and 12 degrees of freedom

In the finite element formulation, a quartic displacement function is chosen

w=g'a

; (9.40)

2 2 3 3 3
XYy xy© oy Xy xy]
Where x4, x2y? and y* are missing from the complete quartic expansion. The terms x* and y* are removed
to avoid discotinuity in the displacement at the boundaries with the element. The term x?y? is alone and
cannot paired with any other terms so that is rejected. We substitute Eq. (9.40) into the nodal coordinates
to obtain

g=[1 x y x* xy y* X

131



I
@
jSb]

O Ok OO kP OO P, O O Bk

P OO Fr O P O Lk O O
O

Inverting the C matrix

-

P o o o

(@)

L o

o Tl N O

o O O o

o O O T
1
N
(o

o O

(@)

o ok

®» |k O O O

o

O O O O o o

ab?

-2ab
b2
0
0
b2

-3b?
0
b3

-3b°
0

_a3

3a’h

0
0
0

O O O O o o

ab®
-3ab?
b3

a

3
b
3
ab?
2
b3
2
a’b
2
ab®

“ab?

(9.41)

(9.42)

The stiffness matrix is calculating using the operator g_=1_Nn, =1L {g"C"} , Where L is given by Eq. (9.37)
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The stiffness matrix becomes
ab
k.= B,/DBdV=t] [ (L{g" (x)}.C") D(L{g" (x.y)}C")dxdy (9.44)
v, 00
[0 0 0]
0 0 0f i
0 00
. ol 5 o olft v O 000 -2 .
ke=—zc-f{jj v 1 01000 0 . |dxdy}C ™! (9.45)
12(1-v?) AR
0 o Lvi|0o0 o0 0
L 2

The rest of the steps, including assembling the global matrix equation, applying boundary conditions, and
constructing the load vector, follow the standard procedures in previous chapters. In our formulation we
assume that the shell can be described as a superposition of a plate element and a plane strain element.
Numerous other shell elements have been developed over the years. In some formulations, it is assumed
that each element of the shell has six degrees of freedom u, v, w, 6y, 6y and 6. The last one is the so-called
drilling degree of freedom. An artificially stiffness is incorporated to this fictitious degree of freedom,
leading to a formulation that is interesting form the theoretical and practical point of view.
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Problems

Problem 9.1. Structural mechanics: bending of beams

A beam fully supported at its two ends has dimensions 2.5m x 0.25m x 0.12m. The material properties are:
Young’s modulus: 30,000MPa, Poisson’s ratio 0.2, and density 2,400kg/m®. The load is a combination of
the dead load (self-weight) and the live load. The later consists of a load of 1 kN/m distributed along the

beam.

w =1kN/ m

INENEEE RN RN

0.25m

-

Ale

v

NN

DN

2.5m

a) Solve the deflection along the beam using simple bending theory.

b) Will the finite element solution with one beam element give the exact solution? Justify your response

Problem 9.2. Structural Mechanics: bending of cantilever beams

A cantilever beam has dimensions 2.5m, height 0.25m and thickness (out of plane) 0.12m. The material
properties are: Young’s modulus: 30,000MPa, Poisson’s ratio 0.2, and density 2,400kg/m®. The load is a
combination of the dead load (self-weight) and the live load. The latter one is a concentrated load at the tip

of 4kN.

P=4 kN

Thickness=0.12m

$ 0.25 m

AN

25m

1) Write the governing equations of the problem
2) Find the analytical solution of the governing equations
3) Using the analytical solution to plot the deflection, bending moment, and shear force versus position
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Problem 9.3. Rotational stiffness of bended beams

The figure below shows the end rotations and the end moments of a beam, along to its total deflection A.
Solve the equilibrium equation of the beam to obtain a solution for the rotations 0, and 0, in terms of the

end moments Ml, |V|2 and the deflection A.

¢~ \01, M1
T~— - HA "2

02, M2

Problem 9.4. Frame buckling using beam elements

This problem is related to the buckling of a plane frame that has beam and column lengths each of L, pinned
at the column bases and fixed against vertical deflection (only) at the 2 extreme beam ends. The loading
consists of an equal downward load of P at the top of each column. The beams have an area A, moment of
inertia I, Young modulus E, and Poisson ration. The first (sideway) and second (symmetric) buckling
modes are shown in the following figures.

Ty
/ /

() First mode of buckling (sideway) (b) Second mode of buckling (symmetric)

1. Find the critical buckling load as a function of E, I, L, and the buckling factor k.
2. For the sway mode, find the rotational stiffness of the top node of the vertical column, the rotational

stiffness of the node is defined by o, = Za where o =M /0 is the stiffness of any adjacent member
A

connected to the end of the compression member. The same definition applies to node B.
3. Find the buckling factor of the sway mode using the equation provided below
For the symmetric mode, find the rotational stiffness of the top node of the vertical column.
5. Find the buckling factor of the symmetric mode

Hint for the use of the Newton-Raphson method:

>

i(cot X) = —cosec’Xx
dx
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Chapter 10
VIBRATION OF STRUCTURES

The study dynamics of a structure, whether produced by wind load, truck or pedestrian load, or earthquake
load, is one of the most important aspects of numerical modelling. Most of the analysis done in engineering
assumes that the structure is static. Yet there are many situations where the load changes in time and
therefore inertia and damping effects become important. In high-rise buildings, wind loads activate its
natural frequencies and may produce uncomfortable oscillations that need to be damped. The 101 Tower in
Taiwan incorporates a giant mass damper at its top to effectively damp oscillations. Earthquakes produces
a wide spectrum of frequencies in the ground motion. When these frequencies match the natural oscillation
of the building, the whole structure may collapse. In bridges there are also unprecedented dynamical
phenomena, like the constant sawing of the Millennium Bridge in London due to pedestrian traffic, or the
complete collapse of the Tacoma Narrow Bridge due to wind load. The mathematical modelling of these
processes requires a clear understanding of the natural frequencies of the structures, and how these
frequencies respond to external time-dependent loads.

10.1 Vibration of one degree of freedom

If a force is suddenly applied to a structure and then released (a transient excitation), the structure will
vibrate at a unique frequency determined by its stiffness, called the natural frequency. If a structure is
subject to sustained excitation, the vibration response of the structure will vary depending on the frequency
of the sustained excitation. As the exciting frequency approaches the natural frequency of the structure,
the movement of the structure will become magnified, because each application of the exciting force will
add to the existing vibration of the structure. This is the phenomenon of resonance.

Figure 10-1 Harmonic oscillator with mass m, spring constant k, and damping constant c.

In the dynamic analysis, the structure can be represented as a collection of independent harmonic oscillators
that responds independently to the external actions. A harmonic oscillator, Figure 10-1, is an idealised
structure consisting of a mass m attached to a spring with spring constant kand a damping constantC. The
spring constant accounts to an elastic force applied to the mass given by

Felastic =—ku (10.2)

where u is the displacement of the mass from its resting position. The damping constant accounts for
dissipation of energy that reduces the duration and amplitude of vibrations. As the mass moves the force
due to damping is proportional to its velocity, and acts in the opposite direction

E e (10.2)

amping =
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wheretrepresents the time derivative of the position, which is the velocity. If F(t) is the time dependent
external force acting on the mass, the second Newton’s laws states that

mu:Felastic +Fdamping +F(t) (103)
Replacing Egs. (10.1) and (10.2) in (10.3) we derive the equation of motion of the harmonic oscillator
ku+cu+mu=F(t) (10.4)

10.2 Vibration of multiple degree of freedom structures
Consider, for example, the two-storey building frame drawn below.

mass 1

L1
mass 2

L.

Youd Yo
Figure 10-2 Lumped mass model of a two storey building

It is assumed that the beams are rigid, so the beam/column connection cannot rotate. The shape of the
structure can therefore be defined by the horizontal translation of the upper storey and the horizontal
translation of the lower storey (degrees of freedom 1 and 2 respectively). Consistent with this assumption,
the mass of each beam can be lumped at its centroid. This is known as lumped mass model.

The model of a multi degree of freedom structure is often more generally represented by springs and masses

as below,
o m

Figure 10-3 Idealised model of two lumped masses

The Newton’s second law for a system of two undamped mass is given by

2 Fn, =~ Kyl Hku, +F () =mil, (10.5)
Zsz :klul —(k1+k2)U2+F2 (t):mU2 (10.6)

which can be written in matrix form as,
m 074 [k -k Tu] [R®
T = (10.7)
0 m, || U, _kl k1+k2 u, Fz (t)
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This matrix equation can be expressed in a compact matrix form as follows

MU+KU=F(t) (10.8)
where the mass matrix, stiffness matrix, displacement vector, and force vector are given by
m, 0 k -k u F(t
M — 1 K: 1 1 U — 1 F(t) — 1( ) (109)
0 m, -k, k +k, u, F, (t)

10.3 Vibration of a continuum structure
Using finite element analysis, it is possible to analyse dynamics of a continuous structure as a system of
finite degrees of freedom. The governing equation of the structure is given by

o’u

L [6]+w(x,t) = > (10.10)

where the last term account for the inertial forces acting on the structure, and p is the density of the

material. The weak form of this equation is obtained by multiplying it by a virtual displacement and
integrating it over its domain.

) 4 0%
JuT(Us(x)+w(x)Jdv = [uT 2 v (10.11)
\% \%
The integration by part convert this equation into
2
js*Tch = Iu*TTdA+ I v wdV+ _[ u*Tpa—lz'j dv, (10.12)
v A Y% Y% ot

where A, is the area were the traction is applied. The next step is to adapt a mesh to the domain of the

system, and to introduce a set of interpolation function that connects the displacement of the nodes with the
continuous displacement of the structure:

u=NU (10.13)
Replacing Eq. (7.18) and (7.19) into Eq. (7.17) the matrix element equation becomes
MU+KU=F(t) (10.14)
M= [pN'NdV K =[B'DBdV (10.15)
\Y \%
F= j N"wdV + j N'Tda (10.16)
\ S

10.4 Determining the natural frequencies of the structure
The goal of a dynamic analysis of a structure is to find the solution of the matrix equation

MU+KU=F(t) (10.17)

where the matrices M, K, and F(t) are given. We also request initial conditions, which corresponds to the
initial displacement and velocities of the structure. The Eq. (10.17) can be numerical solved using the so-
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called transient solver. This is time stepping algorithm that tracks the position of each node of the structure
in a sequence of discrete timeframes. In practice, this method is not used very often because it involves
large amount of calculations.

The spectral solvers provide an alternative to the transient solvers that is computationally much more
favourable. The principle of this solver is to find the natural vibrations of the structure, which are the
vibration experienced due to an initial disturbance in the system. This part of the analysis is called natural
frequency solver. Once the vibrational modes are found, we will find the response of each natural mode to
any external load (wind, earthquake, or pedestrian motion). The numerical solution is then assumed to be
a linear combination of the response of each individual mode. We will start explaining the way to find the
natural frequencies of the structure, and then we will introduce the equations of the spectral solution.

Natural frequency solver

To find the natural frequencies and the vibrational modes of the structure we remove the damping forces
and external forces from the governing equation Eq. (10.17)

MU+KU=0 (10.18)
We seek as a solution a simple oscillatory function with frequency
u(t) = U el (10.19)

Replacing Eqg. (10.19) into Eq. (10.18) we obtain
(K—o*M)U, =0 (10.20)
To find a non-trivial solution of this equation, we required the matrix accompanying U, in Eq. (10.20) to
be singular. In other words, its determinant should be zero
K —w’M[=0 (10.21)
The evaluation of this determinant leads to a polynomial function of w?. The order of the polynomial is the

same as the number of degrees of freedom Ny , and hence we obtain N,,; independent values of the natural

frequencies. Therefore, a structure has the same number of natural frequencies as there are degrees of
freedom to describe the displacements of the masses. The frequencies are usually sorted in ascending order,
and the smallest one is called the fundamental frequency of the structure. Each frequency will correspond
to a mode shape according to the Eqg. (10.20). The modes shapes correspond to an excellent set of base
functions to express the general solution of a dynamic probem, as we will see in the next section.

Finding the mode shapes
To find the mode shapes of the natural frequency ©; , we replace into the Eq. (10.20).

(K—o?M)U, =0 (10.22)
The corresponding vibrational modes is given by the Uiej‘”it . The mode shapes has a special ortogonality

property that is derived as follows: Lets consider the Eq. (10.22) For two different natural frequencies o,

and O,
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(K- me)Ui =0
10.23
(K- coﬁM)Uk =0 ( )
Lets multiply the first equation by the transpose of a mode shape U, , and the second equation by the

transpose of U corresponding to the natural frequency ®,
UIKU, —o?UIMU, =0 (10.24)
UKU, —o?UTMU, =0 (10.25)

Now we use an important property of the mode shapes taht can be deduced from the structure of the
matrices: The stiffness matrix K is symmetric and mass matrix M is diagonal, so that we can transpose
the Eq. (10.25) is given by

UTKU, —oUJMU, =0 (10.26)
Now if we substract this equation from Eq. (10.24) we get

(@2 —0?HUIMU, =0 (10.27)
or,

o o, = UIMU,=0 (10.28)

This equation states that the mode shapes of different natural frequencies are orthogonal with respect to the
mass matrix M . Substituting Eq. (10.28) we obtain that

o, #o, = UJKU,=0 (10.29)

so that the mode shapes are also orthogonal with respect to the stiffmess matrix K.

Since the modes shapes correspond to an orthogonal basis in the N,; —dimensional space, any displacement
of the structure can be expressed as a linear combination of these eigenvectors. Let us assume that ris an
arbitrary vector in the N, —dimensional space. We express this vector as a superposition of mode shapes

r=>» c.U, (10.30)
k=1
Each coefficient C; of this superposition can be calculated by multiplying this equation by U T, M and using
the orthgonality property
U/ Mr
C,=
U'MU,

(10.31)

These coefficients are known as mass participation factor of the vectorr.

Finding the mode shapes

The absolute value or norm of of any N,,; —dimensional vector can be defined as
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r|=~r"Mr (10.32)

In most cases it is convenient to convert the mode shapes in orthonormal base by dividing each mode shape
by its norm. After normalization of the mode shapes, the norm of any vector can be calculated by replacing
Eq. (10.32) into Eq. (10.30). This results in:

N dof

r|= ;C? (10.33)

This equation is nothing more that the generalization of the Pythagoras’ theorem in the high Ny
dimensional space, which is useful for the response spectrum method introduced in the next section.

10.5 Response Spectrum Method

To perform an analysis of a structure under time variable loads, it is necessary to have a precise information
on the evolution of the load with time. In some cases, such as in earthquake analysis, this information is not
available. Instead we have only the peak responses of harmonic oscillators as a function of their frequency.
The response spectrum method allows us to calculate the peak response of a structure from using the natural
frequency analysis (natural frequencies and mode shapes) and the response spectrum to the external load.

Response spectrum

A response spectrum is a plot of the peak response (displacement, velocity of acceleration) of a harmonic
oscillator subjected to a specified acceleration. Let us start writing the equation for a harmonic oscillator

m@(t) + c4(t) + ke (t)=mg(t) (10.34)
Before solving the ordinary differential equation Eq. (10.34), we write them in a convenient form:

B) + 2Ewodh (1) + OIH(D=g(1) (10.35)

where ®,=k/m is the natural frequencies, and & =C [(2m ®,) is the so-called damping ratio. Duhamel’s
integral provides a solution to Eq. (10.35)

¢ (t) = j-g(t) e sin(o, (t—1))dt 0y =1 & (10.36)

Oy

The relative displacement spectra is defined as the maximal displacement of the harmonic oscillation due
to this ground motion

Ss(&0p)=|8,(0)] (10.37)
In similar way, the velocity response spectrum, and the acceleration response spectrum are given by

S, (&wy)=|d®)] (10.38)

S, (Ewo)=|d (0] (10.39)
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In the case of earthquake response, the response spectral is calculated from the ground acceleration and the
damping on the system. For the analysis of a structure, a history data of earthquake is analysed and the
response spectral can be found in the tables and standards.

Spectral response solver
The spectral response analysis provides a solution to the following equation:

MU +CU + KU = Mrg(t) (10.40)

where the external force is written as F(t)=Mrg(t), being g(t) the imposed acceleration and the influence
coefficient factor ran n,, -dimensional vector accounting to the participation the external load in each one
of the nodes. We proposed solution to Eq. (10.25) as a time-modulated combination of modes

Neof

Ut)=>4 (U, (10.41)

where U, the vibrational models which are assumed to be normalized |Uk| =1 as Inserting Eq. (10.41) into
Eqg. (10.40) we obtain

=}

dof

(A OMU, +4 OCU, + ¢ (KU, ) =Mrg(t) (10.42)

k=1
Now we assume that the matrices M and C are diagonal, which is valid to classically mass-damped systems.
Multiplying by UiT and using the orthogonality of the modes given by Eq. (10.28)

UMU. g (t) + UTCU. 4 (t) + UTKU. ¢ (t) = U Mrg(t) (10.43)
Simplifying
M (6) + ¢, () + kb (=m,T",g() (10.44)
m =U'MU, ¢ =U'CU, k =X'KX, T, = UTiTMr (10.45)
U'MU,

Before solving the ordinary differential equations Eq. (10.44), we write them in a convenient form:
4O+ 2504 O + @4 O =T,90) (10.46)

where o,=k;/m; are the natural frequencies, and {=c/(2m®,) are the damping ratios. Duhamel’s
integral provides a solution to Eq. (10.46).

() =1S(S, m;,1) (10.47)
where
L gteit
S(&,m;,t) = Ig(t) - sino, (t—1)dt  o,=,/1—&? (10.48)

Note that the function S(&,m,,t) is the response of a harmonic oscillator with natural frequency ® and
damping ratio ¢ to a imposed acceleration g(t).
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Replacing Eq. (10.48) into Eq. (10.47) and into Eq. (10.41) gives the spectral solution of the problem. In
practice, the calculationn,, ordinary differential equation may result cumbersome. Thus the problem is

further simplified by truncating the sum in Eq. (10.41) to keep only the modes that mostly contribute to the
dynamical response of the system. First we consider the maximal modal displacement of each mode:

b =AM =TSE,) (10.49)

Then the total response can be calculated by summing the individual responses of each degree of freedom.
The simplest superposition method is the absolute sum that assumes all modals peaks at the same time. The
maximum response is given by

Uy = Zo\cfi.,max\ = ZDIFiS(éacoi)l (10.50)

In the SRSS method the maximal response is obtained from Euclidian norm of individual response

Ngof

Umax = \/iﬁmaxz = \/Z[ris(zﬁ:’mi)]z (1051)

i=1

There are more alternatives to superpose the modes, but the most important point is that modes of high
frequencies may be removed from the sum as they do not contribute much to the sum.

143



Problems

Problem 10.1. Spectral Response

A two storey frame building has the mass described in the following figures. The upper columns have a
stiffness k and the lower one 2k, where k=200kN/m.

mass 12t
mass 24t E "
"% 06 o
o4 ST % I 20 50
Period, T (s)
(a) Two-storey building (b) Spectral acceleration response

Determine the matrices K and M
Calculate the natural frequencies
Calculate the mode shapes

Calculate the mass participation factor of each mode

o~ w0 DN

Obtain the acceleration of each node using the spectral response given in Figure 2
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APPENDIX A

A SUMMARY OF MATRIX ALGEBRA

A matrix is a set of numbers arranged in rows and columns. An r by ¢ matrix A (rxc) is a matrix which has
a total of r rows and ¢ columns.

The following rules and definitions apply:

A square matrix A(nxn) is a matrix which has as many rows as columns.

An identity matrix | of dimensions nxn is a square matrix.

A matrix A(rxc) can be multiplied by a scalar number p, by multiplying each of its elements by that
number. The result is a matrix B=pA of the same dimensions, rxc, as A.

Two matrices A (raxca) and B(rpXxcs) can be added together or subtracted from each other if and only if
ra=rp and ca=Cp. The result is a matrix C with the same dimension as A and B.

Two matrices A (raxca) and B(rpxcp) can be multiplied by each other (AxB) if and only if ca=r,. The
result is a matrix C with dimensions raXco.

A SUMMARY OF MATRIX OPERATIONS BY MICROSOFT EXCEL
To multiply matrix M1 (mxn) by M2 (nxp) using Microsoft-Excel, do the following:

1. Enter values of matrices M1 (mxn). Select the matrix with the mouse (the area becomes black as you
select it). Give the matrix a name (say, matl) in the “name box’ in the top left-hand corner of the sheet.
Do the same for M2 (mat2)

2. Select a blank area the size of the resulting multiplication matrix (mxp) with the mouse

3. Type in: =MMULT(matl,mat2).
(If, for any reason, you haven’t given the matrices names, you can always select them as you are typing
the function)

4. Press Ctrl-Shift-Enter, Results are then displayed in the selected area.

A similar procedure applies to other matrix functions.

Other useful MICROSOFT-EXCEL functions are:

TRANSPOSE(matl), transpose of a matrix

MDETERM(matl), determinant of a matrix (result is a scalar, no need to select area of resulting matrix
and no need to type Ctrl-Shift-Enter, only Enter)

MINVERSE(matl): inverse of a matrix

MMULT (matl,mat2): multiplication of 2 matrices
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Exercise Al
Given the following matrices:

1 2 -1 2 05 1 (1 1 -1 -1 2 1 -1
A=|2 2 3 B=|-7 6 2 C=|2 -1 2 D=1 9 3 -2
11 1| 1 3 8 12 5 1 2 1 -2 2
1 2 2] 2 10 -1 -3 8
““lo 13 F{—ZlJ G=1 2 -5

- - 0 1 -2

1 2 11 -1

1 2 1 -1 123321 1 2 2
Hel1 1 1 —2|'s[2 1221 1] J=2 2 b=|1

5 o 1 _o 25551 -1 11 1
-19 2 2

A: For each of the following operations indicate:
i Whether the operation can be performed
ii: If it can be, the size of the resulting matrix? (do not perform any calculations).

1 [A]+[B] 2: [A]-[B]
3:  [A]+[D] 4:  [A]xC]
5: [A]x[H] 6: [HIx[A]
7. [AX[I] 8: [D]?
9:  [A]? 10:  [D]T

11: [A]"

B: Perform manually and then verify with MS Excel the following operations:

1. [A]+[B] 2. [A]—[B] 3:[A]x[D]

C: Perform with MS Excel the following operations

1: [A]x[C] 2: [CIx[A] 3: [DIx([E]+[FD)
4: [JIX[E]+[I]%[F] S [A]X[GC]

D: Answer the following questions

1 From the previous operations, deduce the inverse [A]* of matrix [A] without performing
any calculations
2: Calculate the inverse [A]™* of matrix [A] with MS Excel
3: Calculate [x] in [A][x]=[b], where [X] is a 3x1 column vector
Exercise A2:

Given the following 6x6 matrix [M]:

146



(10 1 2 2 1 2 1
1 20 4 3 2 3 2
2 3 30 3 4 3 3
M: b:
3 4 2 40 4 4 4
4 5 2 3 5 3 5
|4 4 6 6 6 60 6

You are required to perform the following operations using MS-Excel:

1. [A]=[M]"

2. v = determinant ([A])

3. [CI=[A]*

4. Verify that the matrix inversion is correct by multiplying [A] by [C]
5. Calculate [x] such as [A][x]=[b] by multiplying [A]}[b]

6. Verify that operations are correct by multiplying [A][x] to get [b]
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APPENDIX B

B.1: Local and Global Coordinate Systems

The position of a point in space is usually defined by nominating its coordinates (X, y, z) relative to a fixed
set of reference axes. These coordinates are sometimes called the global coordinates.

In the course of analysis, it may be more convenient to introduce a local set of coordinates. For example, it
may be decided to measure X in the east direction, y in the north direction and z vertically. However, in
examining the behaviour of a particular piece of bracing it may be much more convenient to adopt a local
set of axes with one of the coordinate axes directed along the centroid of bracing.

If a local set of coordinate axes is introduced it is desirable to be able to express the local coordinates in
terms of the global coordinates and vice versa. For simplicity of presentation only the two-dimensional
situation will be considered here. A set of local axes derived from translation is shown in Figure B.

y Y
A A
o
X
Y
y
O =
(X0:Yo) X
X
> X

Figure B. 1 Translation of axes

It can be seen that

X=X — Xo (B.1)
Y=y — Yo
A set of local axes generated by anti-clockwise rotation through the angle 6 is shown in Figure B. .

It follows that for this case:
X =+xco0s(0) + y sin(d)

) (B.2)
Y =-xsin(d) + y cos(6)

X | +cos(6) sin(0) || x
{Y}{—Sin(ﬁ) cos(e)}M (B.3)
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Y
y
) -
Figure B. 2 Rotation of axes
The relationship between global and local coordinates is:
x| |cos(d) —sin(6) || X
y| |sin(@) +cos(d)| Y B4
Or alternatively
r=HRr (B.5)
In Equation (B.5)
X X cos(#) —sin(@
r=( |, P= and H=.() (6)
y Y sin(@)  +cos(d)
Comparison of Equations (B. 3) and (B.4) show that the matrix H is orthogonal and so:
H71 — HT
In 3D:
Il ml nl
H' =, m, n, (B.6)
|3 m3 n3

where I, I2 and |3 are the cosines of the counter-clockwise angles between the x-axis and the X, Y and Z

axes, respectively. mi, my and ms are the cosines of the counter-clockwise angles between the y-axis and
the X, Y and Z axes, respectively, and so on.

In a right-angled Cartesian coordinate system, the following relationships must be satisfied:

l1il2+ mim2+ninz=0
Iols + moms+ nonz=0

Isli + mamy1+ n3n1=0
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Example B.1

To illustrate the introduction of local axes, suppose that on a particular site a set of global axes has been set
up with the x-axis being in the horizontal plane and the y-axis vertically up. Bore hole data from the site
shows the presence of a narrow layer of silt inclined at 20° to the horizontal. In examining the behaviour of
the seam it is decided to introduce a local set of axes with its origin 10 m below the surface and with the
X-axis directed along the seam (in a downwards direction) and the Y-axis perpendicular to the seam. The
global coordinates have their origin at the point of intersection of the seam with the surface.

y y

Global Coordinates

Figure B. 3 Rotation and Translation of axes

The calculation is best performed in two stages. First consider the intermediate local coordinates (X*,Y*)
shown in Figure B.(b). These coordinates are located at xo=27.4748, yo=-10. Thus
X*=x — 27.4748
Y*=y +10

The relationship between (X,Y) and (X*,Y*) can be found by rotation of axes (notice if you use
Equation (B.2) that 6 = -20°) and it is found that:

X =0.9397X" — 0.3402Y"
Y =0.3420X"+ 0.9397Y"
This finally leads to the expression for local coordinate in terms of global coordinates:

X =0.9397x — 0.3402y — 29.2380
Y =0.3420x + 0.9397y
and to the expression of global coordinate in terms of local coordinates:

x = 0.9397X + 0.3402Y + 27.4748
y =-0.3420X +0.9397Y — 10

B.2: Cylindrical Polar Coordinates

The treatment given in the previous sections has been expressed in terms of cartesian coordinates. In many
applications it is more convenient to employ curvilinear coordinates. Typical of these are the cylindrical
polar coordinates r, 6, z, which are related to cartesian coordinates by the relation

X=rcosf, y=rsin6
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The coordinates are illustrated in Figure B.4

<
N

o X

Figure B. 4: Polar coordinates

Exercise B.1
A rectangular element ABCD has vertices with coordinates as given below.

X(m) y(m)

A ]20000 0.5000
B [6.3879 2.8971
C |1.5937 11.6730
-2.7943 | 9.2758

The coordinates of the point P is:

x(P)=1.2768 m y(P)=8.0814m

If the origin of local coordinates is taken at A and thex-axis is directed along AB and the y-axis is directed
along AD find the local coordinates of the point P.
Answer: X(P) =3m Y(P) =7m

B.1: Transformation of Displacement
If forces are applied to a body it will deform as shown in Figure B. and thus a point originally at positionP
will move to an adjacent position Q.

The point is said to be displaced and the displacement is defined by:

u=r(Q) — r(P) (B.7)
Thus the displacement components are given by:
{ux} _ {x(@) : x(P)} B8)
uy y(Q) - y(P)

151



Q(x.y)

([
P(X0,Yo)

> X

Figure B. 5 Displacement of a point

These displacements are expressed in terms of the global coordinate system. It is often convenient to
determine what the displacements are in a local coordinate system. Clearly a translation of axes does not
change the displacement components, however a rotation of axes does induce a change. Therefore, it can

be seen that:
Uy = u, cos(q) +u, sin(q)

uy =-u, sin(q) + u, cos(q)
and conversely

u, =u, cos(q) - u, sin(q)

u, = u, sin(g) + u, cos(q)

These equations may be written in matrix form as follows:

u=HU
U=H"u
where
u= {ux} is the displacement vector in the global coordinates
y
U= {ux} is the displacement vector in the local coordinates
l’IY
H = cos(q) -sin(q)
sin(q) +cos(q)
Example B.2

In the situation described in example 1.1 the following movements are recorded:

Ux =18 mm
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Uy = —5mm

The local coordinate system can be used to assess if this movement corresponds to movement along the

seam.
It is found that:
uy, | | 0.9397 -0.3420 |18 | |18.62 mm
u, | | 0.3420 +0.9397 ||-5| |1.46 mm
and thus there is a substantial movement along the seam.

B.2: Rigid Body Displacement
A body may undergo modes of movement in which there is no change of shape. Figure B. illustrates such

a movement in the xy plane.
y
) O

Final position

@)
Initial position

> X
Figure B. 6 Rigid body movement

It can be seen that the rigid body can be broken up into three distinct movements, a translation in the x direction,
a translation in the y direction and a rotation about a line parallel to the z-axis through the point O. It can be
shown that for small rotations

Ux =Xf—Xi = Uxo — (Yi — Yo) W
Uy = Y —Yi = Uyo + (Xi — Xo) Wy

where
Uxo IS the rigid body translation in the x direction

Uyo iS the rigid body translation in the y direction
W is the rotation about the z axis
and Xo, Yo are the coordinates of the reference point O.

Exercise B. 2

The centre of a 5m radius silo (a cylindrical container) is located at a pointx=25m, y=10m, z=0m. The
following deflections:

Ux = 10mm
Uy = Smm
U = 2mm
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are detected at the point x=29m, y=13m, z=10m. Calculate the radial component of deflection. (Answer:
11mm)
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APPENDIX C

C.1: Direct Assembly of the Global Stiffness Matrix

It is not necessary to assemble the global stiffness matrix of the unrestrained structure. Instead, a system
containing only the unrestrained degrees-of-freedom can be assembled to form the restrained stiffness
matrix. There are several different strategies that can be adopted to incorporate boundary conditions while
assembling the global stiffness matrix. Here an approach based on transformation of the local degrees-of-
freedom to the global degrees-of-freedom is discussed in detail.

Figure C. 1 Truss structure

Each bar element has n4or=4 local degrees-of-freedom, which is equal to the number of nodes in the element
times the number of degrees-of-freedom per node. The structure has also Ngor global degrees-of-freedom,
which is equal to the number of nodes in the structure times the number of degrees-of-freedom per node
less the number of restrained degrees-of-freedom. The number of the global degrees-of-freedom for the
truss structure shown in Figure C. is Ngof=6 x 2 - 4 = 8. Assume that the unrestrained degrees-of-freedom
can be rearranged as:

Ap ={a,,a,,a;,8,,85,85,8,a}

By convention, the rearrangement of the global degrees-of-freedom is formed by going through all the
nodes in ascending sequence and allocating an index number i to each degree of freedom that is
unrestrained, ai. The restrained degrees-of-freedom have a value of zero and do not contribute to the vector
of the global degrees-of-freedom. For example, the restrained and unrestrained degrees-of-freedom for the
truss are:

Unrestrained DOF | u1 | vi | U2 | V2 | Us | V3 | Us | Vs | Us | V5 | Us | Vs
Global DOF 0| O |a |a|a | & |a |a |a7|a | 0| O

where a1, for example, is the global label for u, and a: is the global label for v. etc. Therefore, the local
degrees-of-freedom for each element can be related to the global degrees-of-freedom. For example, for
element 6:

Local DOF for element6 | u | v2 | Us | Vs
Global DOF ai | a2 | a7 | as

The vector of the local degrees-of-freedom can be related to the vector of the global degrees-of-freedom
for the restrained structure by a transformation matrix, Q.

5 =Q,.A, (C.1)
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The size of the transformation matrix is (NdgorxNdor). The component gjj of matrix Qe is1 if the i degree-of-
freedom of the element e (the local degrees-of-freedom) is equal to j*" global degree-of-freedom, otherwise
Qij is zero. For element 6, for example, Qs is:

a, a, a, a, a, a, a, ag

u, v, U, Vv, U, V, U V,

1.0 0 0 0 0 0 0] u, uf

01000 0 0 0 v, v
%=10 0000 0 1 0] u u

000 00 0 0 0 1] v, v

The transformation matrices Q for all elements are given in Application of the principle of virtual work
eliminates the virtual displacement vector from Equation (C.7) and the element stiffness matrix is obtained
in terms of the global degrees-of-freedom which is suitable to be used in the global stiffness matrix for the
complete structure directly:

K;=[QI.B".D.B.Q, dV (C.8)

The unrestrained element stiffness matrix in terms of the local degrees-of-freedom was given in Equation
(2.18) as:

ke:jBT.D.BdV (C.9)

Therefore, the relationship between the unrestrained element stiffness matrix, ke, and the restrained element
stiffness matrix in terms of the global degrees-of-freedom, K can be obtained by comparing Equation
(C.8) with Equation (C.9):

K, =Q! .k°.Q, (C.10)

Table C. 1Substituting Equation(C.1) into Equations (2.8) and (2.10) results in:

e=B.5° =B.Q,.A, (C5)
6=D.B.5* =D.B.Q,.A, (C.6)

where ¢ and o are the stress and strain vectors, B is the matrix of strain-displacement relationship. Thus the
equation of internal virtual work at the element level becomes:

js*T.cdvsz;T.Qg.BT.D.B.QG.ARdv (C.7)
Application of the principle of virtual work eliminates the virtual displacement vector from Equation (C.7)

and the element stiffness matrix is obtained in terms of the global degrees-of-freedom which is suitable to
be used in the global stiffness matrix for the complete structure directly:

KGR:ng.BT.D.B.QedV (C.8)

156



The unrestrained element stiffness matrix in terms of the local degrees-of-freedom was given in Equation
(2.18) as:

ke:jBT.D.BdV (C.9)

Therefore, the relationship between the unrestrained element stiffness matrix, k&, and the restrained element
stiffness matrix in terms of the global degrees-of-freedom, K can be obtained by comparing Equation
(C.8) with Equation (C.9):

K, =Q! .k°.Q, (C.10)

Table C. 1 Transformation matrices for the elements

000O000O0GO0O 10000000
looo0oo00000 01000000
Ql10000000 Qs_00000010

0100000 0 0000000 1
1 00000 0 O] 000010 0 O]

01000000 00000100
%=l 0001000 | ¥ Joo10000 o0
0000010 0 0001000 0
0000100 O] 0000100 0

00000100 00000100
%=lo 0000000/ | ®®Jo0o000010
0000000 O 0000000 1
000000 0 O] 000000 0 O]

000000GO0O 000000O0O0O
%=l 0100000/ | %*Jooo0o00010
0001000 0 0000000 1
1 00000 0 O] 0010000 O

01000000 00010000
L=l 0100000/ | *®foo0000010
000100 0 0 0000000 1

To see how the operation in Equation (C.10) forms the restrained stiffness matrix in terms of the global
degrees-of-freedom from a local stiffness matrix, consider, for example, the local stiffness matrix of
element 6:
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al a2 a7 a8
u2 VZ u5 V5
ki ki Kiy ki | Up &
kgl kSZ kgS kg4 V2 a'2
Ko ks Kis k| Us g
Koo Kio Kis Ki] Vs

Each component of the stiffness matrix, kf is tagged with one ar (a global degree-of-freedom associated

with row i of the stiffness matrix) and one ac (a global degree-of-freedom associated with column j of the
local stiffness matrix). The tags ar and ac show that ki shall be assembled in row r and column c of the

global stiffness matrix. For example, the operation in Equation (C.10) transforms component k§3 into a

position at the second row (due to a2) and the seventh column (due to a7) of the global stiffness matrix. The
restrained stiffness matrix for element 6 in the global system is:

ki, ki, 0 0 0 0 ki ki,
ka k3 0 0 0 0 kj ki
o 0 0 0 O 0 0 O
ke_|0 0 0 0 0 0 0 0
"1o 0 0 O O O 0 O
O 0 0 0 O 0 0 0O
ke ki 0 0 0 0 ky kg
ki ki, 0 0 0 0 ki ki,

The stiffness matrices of all the elements in the global system are presented in Table C. 2.
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Table C. 2 Element stiffness matrices in the global system

-1
-1

0o 0 -1
0 0 -1

0
0

+1 +1 O

+1 +1 O

0
0

0

0 0 +1 +1
0 0 +1 +1

0
0

-1
-1

0
0
0
0

+1 -1 -1 +1 O
-1 +1 +1 -1 O

0
0
0
0

0
0

-1 +1 +1 -1 O

+1 -1 -1 +1 O

0

EA

2J2H| 0

R

2J2H| 0

KL =

0

0 +1 0 -1

0

-1 0 +1

0

0
0

0

0 +1 -1

0

0
0

-1 +1

EA| O

EA

"~ 2J2H| O

R

0 +1 0 O
0
0

0

0 0 +1 O

0

EA| O

0
0

0 +1 0 O

0

EA| O

0
0

0 +41 O

0

EA| O

0
0

+1 +1 O

0
0
0

0
0

+1 +1 O

EA

2J2H| 0

R

0

-1

0 +1 O

-1 0 +41 O
0

EA| O
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APPENDIX D

D.1: Linear Triangular Elements

From the Section 6.1, the 3-noded triangular element shown in Fig.D.1 is the simplest possible planar
element and one of the earliest finite elements. It has nodes at the vertices of the triangle only. For a plane
elasticity problem, where all displacements are in the plane, the element has two degrees-of-freedom at
each node, u and v, corresponding to the displacements in x and y directions respectively. Thus the element
--has a total of 6 degrees-of-freedom. The displacement vector and the force vector are:

u =[U1, Vi,Uy, Vo, U, V3]T

e

fe:[pw 0 P2:0z, Py qs]T

Since each of these vectors contains 6 components, the size of the element stiffness matrix, k&, is 6x6.
y: V. q V3, O3

Fig. D.1: 3-noded triangular element

Stiffness matrix of linear triangular finite element

The general procedure explained in Section 2.3 is employed here to calculate the stiffness matrix of the 3-
noded triangular element.

1. Local coordinate and node numbering system.

The node numbering and the Cartesian coordinate system shown in Fig. D.1 may be used for the
element. The nodes are numbered in increasing order anti-clockwise. The coordinates of the nodes are
(X1, Y1), (X2, ¥2) and (X3, y3). It is noted that the orientation of the element with respect to the xy
coordinate system is completely arbitrary. Therefore the element stiffness matrix will be directly
expressed in the xy global coordinate system.

2. Displacement function

The variation of the displacement components, u and v, within the element can be expressed as complete
linear polynomials of x and y:
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U=a,+a,X+ay = f(x y).a (D.1)

v=Db,+b,x+by=f(x y).b

where f(x, y) ={1, x, y}, 8 ={a,, a,, a3}T and b={b,,b,, bs}T-

3. Relating displacements within the element to the nodal displacements

The general displacements within the element can be related to the nodal displacements using shape
functions:

u=N;u,+N,u,+Nyu, = N".u° (D.2)
V=N, Vv, +N, v, +Nyv, = N .V*

where u; and v; are the nodal displacements in x and y directions, respectively, and N; are the linear
shape functions for the element, as obtained in Chapter 3:

N™ =f(x,y).C"
X Y X2¥3 = XY, X3Yi =XiY3 XY, =X5Y;
C=[1 %, ;| and CT=) ¥,~, Ya=Yi Y=Y,
1 X3 Y; X3 =X, X1 = X3 X =%

where A is the area of the triangular element, X123 and y1 2,3 are the X and y coordinates of the first, the
second and the third node of the element.

Therefore the shape functions are:
Xo¥3 =X3Y,  Xg¥Y1 = Xi¥Ys XY, = X5V,

B 1
NT=fT(x,y)Cl=£{1, XY Y.—VYs Ys—Yi Yi—Y,
X3 —X, Xy =X, X, =X,
(X,Y5 = X3Y,) +X(Y, = Ys) +Y (X5 — X,)
N, 2A
N=JN.l= (XaY; =X, Y3) +X(Y 5 —Y;) + Y(X, = X;)
2 2A
N3 (lez —X2y1)+x(y1—y2)+y(xz _Xl)
2A
Equation (C.1) can now be written in matrix format as:
ul
Vl

ule 0 N, 0 N, O0]fu, or xy)=N &
% 0 N, 0 N, 0 N,
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4. Strain-displacement relationship

The strains at any point within the element, g(x,y), can be related to the nodal displacements, &°, by the
strain-displacement matrix, Be.

&(x,y)=B,.5° (D3)

The matrix Be has been defined for a general case in Section 5.1.2 and contains derivatives of the shape
functions. For the general case of a three-dimensional element with m nodes, the strain vector has 6
components and the matrix Be can be defined as:

N, O O N, O O - N, 0 0
N, O N, 0O - 0 N, 0
0 0 N 0 0 N 0 0 N
Be — 1z 2z mz (D4)
le le 0 N2y N2x O Nmy me O
0 le le O NZz N2y 0 mz N my
_le O le NZZ 0 N2x Nmz O me_

where Nix, Niy and Ni; are derivatives of shape function i with respect to x, y and z, respectively. Each
row of the matrix Be refers to one component of the strain vector. For planar problems, where some
components of the strain vector are zero, the size of the matrix Be can be reduced. For example, the
strain vector under plane stress and plane strain conditions can be written as:

€ ou/ox
ef=9¢g,, = ovloy (D.12)
Yy ovIox +ouloy

Therefore, the matrix Be for these conditions can be obtained as:

N, O N, O -+ N, O
B.=[ 0 N, 0 N, - 0 N (D.6)
L le le N2y N2x Nmy me

For the triangular element with three nodes, the matrix Be is:
I N, 0 N, 0 Ny 0
B.=| 0 N, O N, 0 N

N, N, N, N, N

Ly

(D.7)

3y

N3x

2y 3y

The derivatives of the shape functions for the triangular element can be obtained as:
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le (yz _ya)
le (X3 _Xz)
Noo| _ 1 J0:=¥) D8)
N2y 2A (X1 _Xa)
N3x (Y1 _yz)
N3y (Xz _Xl)

Therefore the matrix Be is obtained for the linear triangular element as:

(Y2—Ys) 0 (Y:—y1) 0 Vi —-Y2) 0
0 (Xa _Xz) 0 (Xl_XS) 0 (Xz _Xl) (D,9)
(X3 _Xz) (YZ _Y3) (X1_X3) (Y3 _Y1) (Xz _Xl) (yl_yZ)

It can be seen that Be and therefore strains within the linear triangular element are independent of x and
y. For this reason, this element is often called the “constant strain triangle”.

1

B,=—
2A

Stress-strain relationship

The stress-strain relationships for continuum problems have been defined in Section 5.3 as:
c=D.¢ (D.11)

where D is the matrix of elastic moduli. Expressions for D have been given for cases of general three-
dimensional problems as well as plane strain, plane stress and axial symmetry problems. For example,
D for plane strain problems is:

c A+2G A 0|le

10y (=| A A+2G 0 |, (D.13)
Oy 0 0 G || Vxy

where A and G are Lamé modulus and shear modulus, respectively.

Relating the internal stress to the external loads

The internal stress can be related to the external loads using the principle of virtual work for the element.
This leads to the equation for calculation of the element stiffness matrix.

k*=[B].D.B,dv=B;.D.B, A.t (D.14)

where A and t are the area and the thickness of the element, respectively. Note that because Be and D
are independent of coordinate location (X, y), the integration over this element can be performed easily
and exactly.
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Application of linear triangular elements in analysis of a continuum

A simple example is given here to demonstrate application of the linear triangular finite elements in the
analysis of a continuum problem. The elastic body to be analysed is a simple homogeneous long block, a
cross section of which is shown in Fig. D.2(a). It is constrained by a smooth rigid horizontal boundary and
a smooth rigid vertical boundary along its two sides. The block is subjected to normal stresses applied to
the other two sides. The Young’s modulus, E, and the Poisson’s ratio, v, for the block are 56 MPa and 0.4,

respectively.

The general procedure in finite element analysis, explained in Section 2.2, will be used here for the analysis

of the problem.

100 kPa

RERR!

| ———
| ——
| ——

(a)

<« 200kPa

(1)
3
(2) 4)
3)
5
X (b)

Fig. D.2: Elastic block subjected to uniform loads

1. Chose a suitable coordinate system

The Cartesian coordinate system shown in Fig.B(b) is suitable for the problem.

2. Divide the geometry of the problem into a number of finite elements.

The geometry is divided into 4 triangular elements as shown in Fig.B.2(b).

3. Use a suitable node numbering system.

The node numbering system shown in Fig. D.2(b) is chosen. As explained in section 4.5, a good node
numbering system should minimise the difference between the node numbers of any member that is a

part of the structure.

The nodal co-ordinates are shown in Table D. . The data defining each of the elements is given in Table

D..

Table D.1: Nodal coordinates

Node | x (m) | y (m)
1 40 | 50
2 00 | 50
3 2.0 2.5
4 40 | 0.0
5 0.0- | 00
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Table D.2: Element data

Element | Nodel | Node2 | Node3
1 1 2 3
2 2 5 3
3 5 4 3
4 4 1 3

4. Calculate the stiffness matrices of all elements

The stiffness matrix of each element can be calculated using Equation (D.14), assuming a unit thickness
for the element.

k*=[B].D.B,dv=B;.D.B, A (D.15)

where Be and D can be calculated using Egs.(6.24) and (D.13). Note that in Equations, X123 and y12;3
are the x and y coordinates of the first node, the second node and the third node of the element. For
example, the matrix Be for element 2 is calculated as follows.

(Vs —Ys) 0 Vs—Y2) 0 (Y, —Vs) 0
Bz = A 0 (X3 _X5) 0 (Xz _Xa) 0 (Xs _Xz)

(X3_X5) (Y5_y3) (X2—X3) (Y3_y2) (X5—X2) (Y2_YS)
and 2A = (X5 Y5 - X3 ¥s) - (X, Y3 - X3 Y,) + (X, Vs - X5 Y,)

Substituting -the x and y coordinates of the three nodes in the above relations results in:
2A=(0x2.5-2x0) - (0x2.5-2x5) + (0x0—-0x5) =10 m?
(0-2.5) 0 (2.5-5) 0 (5-0) 0
0 (2-0) 0 0-2) 0 0-0)
(2-0) (©0-25 (0-20 (25-5 (©-0 (5-0

B, =—
210

-0.25 0 -0.25 0 050 0
B, = 0 020 0 -0.20 0 0
020 -0.25 -0.20 -0.25 0 050
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The matrices Be for all elements are given in Table D..

Table D.3: Strain-displacement matrices

0.25 0 -025 0 0 0 -0.25 0 -0.25 0 0.50 0
Bl—{ 0 020 0 020 0 040} Bz“{ 0 020 0 -0.20 0 O]
020 025 020 -025 -0.40 0 020 -0.25 -0.20 -0.25 0 0.0
-0.25 0 025 0 0 0 0.25 0 025 0 -0.50 0
Bs{ 0 -0.20 0 -0.20 0 040] BA{ 0 -0.20 0 020 0 O]
-020 -025 -0.20 0.25 0.40 0 -020 025 020 0.25 0 -0.50

The matrix of elastic moduli, D, for plane strain analysis is:
A+2G A 0

D=| A A+2G O
0 0 G

2Gv_ =80000 kPa. Therefore:

E_=20000 kPa and ; _ ( )
1-2v

2(L+v)
120000 80000 0
80000 120000 0

0 0 20000

In this problem the material is assumed to be homogeneous and therefore the matrix of elastic moduli,
D, is the same for all elements.

where g —

D=
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The stiffness matrices for all elements are calculated based on Equation (D.15) and presented in Table
D..

Table D.4: Element stiffness matrices

[ 41500 25000 —33500 15000 —8000 —40000
30250 -15000 17750 —10000 —48000
o 41500 —25000 —8000 40000
30250 10000 —48000
Sym. 16000 0
| 96000 |
[ 41500 —25000 33500 15000 —75000 10000
20250 -15000 -17750 40000 —12500
- 41500 25000 —75000 —10000
30250 —40000 -12500
Sym. 15000 0
i 25000 |
[ 41500 25000 —33500 15000 —8000 —40000]
30250 -15000 17750 —10000 —48000
o 41500 —25000 —8000 40000
30250 10000 —48000
Sym. 16000 0
| 96000 |
[ 41500 —25000 33500 15000 —75000  10000]
30250 -15000 -17750 40000 —12500
K 41500 25000 —75000 -—10000
30250 —40000 -12500
Sym. 15000 0
| 25000 |

5. Assemble the global stiffness matrix

The global stiffness matrix is assembled using the direct method of assembly explained in section 4.2.
The unrestrained degrees-of-freedom and the global degrees-of-freedom for the whole structure are:

Unrestrained DOF | u: V1 U V2 Us V3 Usa \ Us Vs
Global DOF a1 az 0 az 4 as as 0 0 0

Therefore the unknown displacements, or the global variables, have six components:
T
Ag={a;, 8,, 85,8, 8, 8}

167



where a4, for example, is the global label for us.

he local degrees-of-freedom for each element can be related to the global degrees-of-freedom. For
example, for element 2:

Local DOF for element2 | u» V2 Us Vs Us V3
Global DOF 0 as 0 0 a4 as

The vector of the local DOF can be related to the vector of the global DOF for the restrained structure
by a transformation matrix, Qe.

o =Q, . Aq
For example, Qe for element 2 is:
a‘l a2 3 a‘4 a5 a‘6

U, v, V, Uy V,; U,
0 0 0 0 0 O] u,
0O 0 1 0 0 0] v,
0 0 0 0 0 O] ug
Q=19 0 0 0 0 of v,
0 0 0 1 0 O} u
|0 0 0 0 1 0] v,

The transformation matrices, Qe, for all elements are given in Table D..

Table D.5: Transformation matrices for all elements

Element 1: i Element 2: i
U, —a, ] 1000 0 0] U, =0 ] (000000
v,—a, 010000 v, —a, 001000
u,=0 Q:oooooo u, =0 Q:oooooo
v,=a,| |00 1000 Vg =0 *looo0oo000
u;=a, 000100 u,=a, 000100
|V, =a, | 0000 1 0] v, =a | 000010
Element 3: i i Element 4: . i
U =0 ] 00000O00O U, =a,] 000001
v, =0 000000 v,=0 00000O00O
u, =a, Q2000001 u =a, Q:100000
v, =0 *loooo0o00 v,=a,| |01 0000
u, =a, 000100 U;=a, 000100
Vs =25 000010 Vs =a, | 000010
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The restrained stiffness matrix for an element, expressed in terms of global variables, K5, can be

obtained from the element transformation matrix and the element stiffness matrix, expressed in terms
of local variables, using the relationship given in Equation (4.10):

€ T e
Kr=Q, .K.Q,
The restrained element stiffness matrices for all elements are given in Table D..

Table D.6: Restrained element stiffness matrices

[ 41500 25000 15000 —8000 —40000 0]
30250 17750 —10000 — 48000 0

o 30250 10000 —48000 0
RO 16000 0 0
sym. 96000 0

L 0_

i 0 0 0 0 0 0]

0 0 0 0 0

o 30250 40000 —12500 0
RO 150000 0 0
sym. 25000 0

L 0_

i 0 0 0 0 0 0]
0 0 0 0 0
o 0 0 0 0
RO 16000 0 —8000
sym. 96000 40000

i 41500 |

[ 41500 25000 0 —75000 —10000 33500
30250 0 —40000 -12500 15000
o 0 0 0 0
R 15000 0 —75000
sym. 25000 10000

i 41500 |

The Global stiffness matrix for the whole structure, expressed in terms of the global variables, is
obtained by summing the element stiffness matrices.
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83000 50000 15000 -83000 -50000 33500
50000 60500 17750 -50000 -60500 15000
K — 15000 17750 60500 50000 -60500 0
" |-83000 —-50000 50000 332000 0 -83000
—-50000 -60500 -60500 0 242000 50000

| 33500 15000 0 -83000 50000 83000 |

6. Assemble the force vector

The finite element equation was obtained in Chapter 2 using the principle of virtual work for the case
where the external forces were applied at nodal points only. The finite element equation can be
expanded to include the effects of any traction, T, applied on the surface of an element or any body
force, F, acting within the body of an element.

To make the nodal forces statically equivalent to the actual boundary tractions or body forces, the
principle of virtual work is employed. An arbitrary virtual nodal displacement is imposed to the body
and the external work done by the various forces and tractions during that displacement are calculated
and equated to the internal virtual work.

Lets assume that the virtual displacement u*® is applied at the nodes of an element. This results in virtual
displacements, u*, and virtual strains, €*, within the element:

3*(x,y)=N.5* and e*(x,y)=B.5*

The work done by the nodal forces is equal to the sum of the products of the individual force at each
node and the corresponding displacement.

(W,

ext)l = S*ET 'fe

where f¢ is the vector of nodal forces. The external virtual work done by tractions per unit area and the
external virtual work done by distributed body forces per unit volume are:

(Wext)z - 6*T T=5="N".T

(Wey)s=e* y=5~TB"y

Equating the total external work with the total internal work obtained by integrating over the volume of
the element results in a more general finite element equation:

ke.5¢ =f° +jNT.T ds +jBT.y dv (B.16)

The expression on the right-hand-side of Equation (B.16) may be used to calculate the “consistent nodal
forces” for the element.

For the problem of the long block, the external tractions are applied at elements 1 and 4. The equivalent
nodal forces due to the tractions are calculated for each of the elements and then included into the global
force vector.

Element 1 is subjected to an external uniform traction in the y-direction, Ty=-100kPa.
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T

[l

The shape functions for element 1 are:

(XaY5 = X3Y5) + X(Y, —¥3) + Y(X5 —X,)
Ny 2A 0.25x +0.2y 1
N=4<N, = (X3y1_le3)+X(gZ_yl)+y(xl_x3) =1 -0.25x+0.2y
N (XY, =X, Y,) +X(Y, = Y,) + Y(X, = X,) —-0.4y+2
2A
Therefore
P, N, 0
o 0 N,
N 0 [T
fr =P =[N".T.dx=| * {X}dx
q, 0 N, [T,
Ps N, 0
ds 0 N,

The traction is applied on the top surface of element 1 which has a constant y coordinate, y = 5m. For
unit thickness of the element, the surface can be described as:

ds=dx, x=0—4m and y=5m

Therefore the consistent nodal forces are calculated for a unit thickness of the element by the following
equation:

INT.T ds =j NT.T dx

The shape functions shall be expressed for the surface, a cross section of which connects node 1 to node
2, wherey =5 m:

N, 0.25x
N=.N,»=:1-0.25x
N, 0

Therefore the consistent nodal forces for element 1 can be calculated as:

P, N, O [ 0.25x 0
d, 0 N, 0 0.25x

Pl rax= | N O o | N
d, 0 N, [T, 0 1-0.25x || 100
Ps N, O 0 0
ds | 0 N | | 0 0 |
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Py
*
o P,
.
Ps
Qs

[ 0.125x° 0
0 0.125x?
x —0.125x? 0
0 x —0.125x>
0 0
0 0

fLoQIfi=

1
fal

1
faZ

" {—300} )

The nodal forces applied on element 1 can be written in terms of the global degrees-of-freedom as:

x=0—4

0
—-200
—-200

0

0

0

kN/m

—200

—200
0
0

Similarly, the consistent nodal forces for element 4 can also be obtained:

The nodal forces applied on elements and expressed in terms of global degrees-of-freedom can now be

ft=

P,
a4
P
i
Ps
Qs

= kN/m

-500
0
-500
0
0
0

and f;=Q,f"= =

added together directly to form the global force vector.

-500
—-200
—-200
0
0
-500

-500
0
0
0
0
-500

7. Solve the global equations to obtain the unknown nodal displacements

kN/m

kN/m

The finite element equations can now be solved for the unknown nodal displacements
Kg . Ar =F,

or
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83000 50000 15000 -83000 -50000 33500 |(a, -500
60500 17750 -50000 -60500 15000 ||a, —200
60500 50000 -60500 0ljas| |—200
332000 0 -83000|a, 10
sym. 242000 50000 ||a 0
| 83000 || a, -500
The unknown displacements can be obtained as:
Ap =KZ . F,
a, [0.3182 —0.1716 —0.0284 0.0384  0.0319 —0.0782](-500] [—0.008
a, 0.3939 -0.0189 0.0122  0.0642 —0.0284||—200| | 0.0025
a;| 1 0.3939 -0.1122  0.1233 -0.1716||-200| | 0.0025
a,[ 1000 0.0788 —0.0339 0.0816(] 0 [ |-0.004
a, sym. 0.1220 -0.1319|| © 0.00125
6 i 0.3182||-500] |-0.008
Then the nodal displacements are:
Unrestrained| ux Vi U2 V2 U3 V3 Us Va Us Vs
DOF
Global DOF|-0.008|0.0025| 0 ]0.0025/-0.004|0.00125| -0.008 | 0 0

The nodal displacements can be used to find the strains and the stresses within each element. For

. Calculate strains and stresses for each element

example, consider element 2. The nodal displacements for element 2 are:

Local DOF for element 2 U2 V2 Us Vs Us V3
Global DOF 0 0.0025 0 0 -0.004 | 0.00125
So that the vector of nodal displacements for element 2 is:
8*=Q,.A, ={0, 0.0025, 0, 0, -0.004, 0.00125}
The strains for element 2 can be calculated as:
e(x,y)=B, .8
-0.25 0 -0.25 0 050 0
B,= 0 0.20 0 -0.20 0 0
020 -0.25 -0.20 -0.25 0 050
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0
0.0025
€x -0.25 0 -0.25 0 050 0 0 —0.002
€y (= 0 0.20 0 -0.20 0 0 0 =40.0005
Yy 0.20 -0.25 -0.20 -0.25 0 050 0
—0.004
0.00125

Note that the strains are independent of the coordinates, i.e., the strains are constant within the element.
Once the strains are known the stresses can be found as:
o(x,y) =D.&(xy)

120000 80000 0
D=| 80000 120000 0

0 0 20000
O,y 120000 80000 0 —-0.002 —200
vy (=| 80000 120000 0 |40.0005};=4-100; kPa
c 0 0 20000 0 0

Similar calculations can be made for all elements.
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SOLUTIONS TO SELECTED PROBLEMS

Problem 2.4. Settlement of soils
U(x+Ax)-u(x) du

1) &=
AX dx
2) c=E(x)e
do
3) —+y=0
) o
d du
—| E(Xx =0 0)=0 H)=P
0 SECS 0 w0 o)
yx° P+yH
u(x)= +
5) u(x) E E
Px
:>s(x)_E—0
:g(x):—7—X+P+E—7H

0 0

=o(Xx)=-yx+P+yH

Problem 2.5. Steel bar with variable area

1) i[AE:H 0 u(0)=0 cs(L)=Ai

du du”
AE——dx Pu”(L
2) | o L)
_ s _
2A, _M 0
2 u 0
1
3) El_AtA, oA _AYALCT
Ax 2 2 2 2 5
0 _A2+AL A2+A|_ Ha
L 2 2

4) Al1=0.0088 m2 A2=0.0076 m2 AL=0.0064 m2
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u,] [ 01773
u, |=|0.33806 | x10°m

u, | | 0.6187

u(x) = u;N, (x)+u, N, (x)+u,N, (x)

A, +oX -
5 - A ATA
0

Problem 3.1. Bar element

D Ne:|: X, =X X=X }

X, =X X=X

1 1
2) Be: T
Ax  Ax

3) Assuming E constant

1 —
Ax|-1 1

4) Assuming f(x) constant

1
Fe::fA—X|::|
2 |1

5) From 3) and 4)
E[ 1 -1[u] fax[1
Ax| -1 1lju,| 2|1

Problem 3.2. Element stiffness matrix of a second order 1D bar
The shape functions of the element are given by the figure
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NOOA

1 2 3
1 N
N1 N3
0 >
X1 X2 X3 X
The restricted stiffness matrix is given by
{kﬂ k23:||:u2:|:|:p2:|
k32 k33 u3 p3
Calculation of the shape function
N (X) ( _Xl)(x _X3)_ X(X—L) :XZ—LX:—X2+LX
(X, =%,) (X, —%;) —(L2)2) -4 L4
N (x) = (X =%) (X =X;) _x(x-L/2) _x*-Lx/2_2x*-Lx
(X3 =% X3 —%,)  L(L/2) L*/2 L
Calculation of the B function from the derivatives of the shape function
_ —2x+L _4x—-L
Calculation of the elements of the stiffness matrix
ky,=|. BZEdx _@ ky=|. B2EdX _% K= BZB3de:_;—LE

Calculation of the load vectors

L 2 L fL
p,=|, N fde= 2L py= [ N, fdx=-=

Problem 3.3. Beam element
*The analytical solution for the deflection of the cantilever with uniform distributed load (Dead Load Case)

:E—

Consequently, the moment can then be calculated as:

dv  w , wL wl?

M(X)=Elk=>Kk=—F=—X" ——X+_——
dx® 2El El 2El

LZ
M(x)——x “wix+ =
2 2

And shear as a function of the position is calculated by:
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dM (x) _
dx
The numerical solution can be calculated by:

WX —wL

S S(X) =

F*=k°v
Where vi=0 and 6:=0 (restrained):
(12 06 12 6] [1 1 _1 1]
L L* R 18 6 18 6
6 4 6 2 1 2 1 1
12 T 92 7 ~ a a2 9
K¢ = E L L L L _El 6 3 6 3
12 6 128 1111
L® I L 18 6 18 6
6 2 _6 4 11 1 2
L ® L > L L 6 3 3]
R, —24.72 0
R, —24.72 0
F: V=
—24.72 v,
24.72 o,

For the boundary conditions of the propped cantilever, the matrix has been partitioned to find v, and 0,:

11

24T _ o 18 6V

247 | 7| 1 2|86
6 3

[v,] 172 18][-24.72] [-0.00311
16, EI|18 6 |[24.72 | |-0.00069

Now using the shape functions already calculated from before the deflection for the numerical solution can now be
calculated.

V(X) =V, N, (X)+ 6N, (X) +V,N,(X) + E,N, (x)
V(X) =V,N;(x) +&,N,(x)
3., 2, x? X
S V(X) =V(X) =V,N;(X) + G,N, (X) = —0.00311(? X°— = X)) — 0.00069(—T + F)
Now the bending moment can be calculated by:
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d?v(x) 6 12x 2 6x
AN EE AR T
d?v(x)
M (x) =—El
(X) ™
d?v(x) 6 12x 2 6X
M(X):—EI dx2 :—EIVZ(F—?)—EIHZ(—E'F?)
Consequently, shear is thus given by:
509~ M) _12EN, 6EIS,

dx N L2

Thus, the plots for deflection, moment and shear can be produced as a function of position along the beam.
For ease of comparison the analytical and finite solutions have been plotted on the same graphs. This is
shown in Figures 4, 5, 6 respectively

Deflection Bending Moment

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Shear Force

0.0000 2 3 4 5 6 7

o
o
-

A 0.0005 Numerical Solution

E -0.0010 Analytical Selution
H

& B
~ —-
5 B

2 00015 .
5 Numerical Solution
§ -0.0020 - y
2 Analytical Solution

N
S
8

T
& 00025
=

Numerical Solution

a

=

=
A
=]

Shear Force (kN)
. o ,
S

]
8 00030 Analytical Solution

Bending Moment (kNm)
. e

-5 £ &

in

Z

0.0035
Length Along Beam (m)

,_.
=
=

&

=]

Length Along Beam [m) i Length Aleng Beam (m)

For the problem above, the numerical solution approximates the displacement along the beam using a
polynomial. There a four degrees of freedom (and thus four unknown coefficients) for the beam element.
Thus, a cubic curve is used to approximate the strains and displacements. However, from the analytical
solution (derived from the strong form) the deflection curve obtained is quartic. Both methods will produce
the same calculated values at the nodes as demonstrated in Figures 4 and 5, yet the values in between nodes
will be different because the curves are not the same within their respective domains. This correlation is

clear from all the plots and calculated results.

Problem 4.1. Trussesl

1+1/242 -1/2J2 0 0 1.3536 -0.3536 0 O
EA| -1/22 1+1/2J2 0 -1|_, .,/ 70:3536 13536 0 -1|N
L 0 0 1 0 0 1 0|m

0 -1 0 1 0 -1 01
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Problem 4.2. Trusses2

1/3 0 0 0 05774 0 0 0
EA| 0 1 0 -1 J 0 1 0 -1 |N
— =2x10 —
Ll 0 0 1/+/3+3/8 3/8 0 0 0.9524 0.2165|m
0 -1 3/8 9/8 0 -1 02165 1.1250

Problem 4.3. Trusses3
1) Element a connects node 1 and node 2 with 6 =45°. Element b connects node 2 to node 3, thus

0 = 180°
05 05 -05 -05][u,| [p 0 -1 0fu| [p}
AE| 05 05 -05 -05|v,| |q*|  AE 0o 0 0 Of|v,| |ab
J2 L|-05 -05 05 05| u,| |pi| L -1 0 1 0fuy| |p
05 -05 05 05||v,| |q 0 o 0J[vs| [a;
2)
(05 05 -05 -05 0 0][u, | [p*]
05 05 -05 -05 0 Of|v,| |¢°
Element (a): AE |-05 -05 05 05 0 Ofju,| |p;
J2 L|-05 -05 05 05 0 Offv,| |qd
0O 0 0 0 0 O0llul| |o
0 0 0 0 0 0Ju] [0]
(00 0 0 0 0 Jfu] [0]
00 0 0 0 0 ||lv| |O
_ b
Element (b): AE 0 0 10 -1°0 2|_| P
L |00 0 0 0 0 |[v,| |
00 -10 1 0 |lu/| |pt
00 0 0 0 0 Jlvg| |q]
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22 Y22 Yz -4z 0 offu) [ e T (e
Y2v2 Y22 -1f2d2 -1f2d2 0 oy, o q

3 AE|-1/2v2 Y242 1/2V2+1 1/2y2 -1 0| Un|_|PaHp; |_| P,
L|_y/ov2 —y/2v2 1242 Y242 0 o V2| |6 | | %

0 0 1 0 1 ofY| | P | |Ps

0 0 0 o o ofva) L o | L]

4) Eliminating the rows and columns of the restricted nodes and using p2=0, g2=-Q

s veal 1o

e o A =

Problem 4.4. Trusses 4

The analytical deflection is given by
2
. V(X) _ L Wy —W—Lx3 + wi x?
El | 24 6 4
The finite element solution of the deflection is

S V(X) = V(X) =V, N, (X) + O,N, (X) = —0.00311(% X2 — % x3) — 0.00069(—XT n %)
Where
1 1
2471 _ o, 18 6l
247 | | 1 2|6,
6 3
Problem 5.5. solver and pre- and post-processing
(red corresponds to unnecessary steps)
PREPROCESSOR PROCESSOR _ _ POST-PROCESSOR
p) input nodes t) create element matrix equations z) calculate nodal loads
q) input elements u) invert element matrix equation aa) calculate nodal
f)  input material v) assembly un-restrained global matrix displacement
properties equation bb) calculate displacement at
s) input boundary w) invert unrestrained global matrix the domain
e equation cc) calculate stress at the
conditions . .
x) apply boundary conditions domain
y) invert global stiffness matrix dd) calculate stress at the
nodes
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Problem 4.6. two bar elements

AE,[1 -1][u, _|p} AE,[1 Ly, :pgl
S R (T NENT IR

1 -1 0][u,] [p 0 0 Oyl [O
2)Afa—110u2:p§ AE”Ol—luz:pg
(0 0 Olu,| |O 0 -1 1{lu| |p
E, -E, 0 [u, p:
3)% -E, E,*E, -E, | u,|=|p5+p;
| 0 -E, E, J[Us o5
AlE,+E, -E,|[u,| [0
YL -E,  E Huj__P}
AE, |1+c —c|lu,| |0
ee >0 CLul
-1

Problem 5.1.Poisson Ratio

o, =0 G6,,=6,,=0
— GXX — v —

E =2 SW——EGXX =E,=—VE,
AL AL

= —VT = AL'=—vAL = AL'=-0.3mm

Problem 5.2.Biaxial Test

c,, = —200kPa
o,, =—100kPa
G,,=V(C,, +0,,)=—120kPa

Bo| 4 1 —~v —vl|o,]| |-2x10°
€,y =€ -v 1 -vio,|= 5%10™ Yp=0
€ -v -v 1 |lo 0

2z z
Al=¢  x4m=—-8mm
AW=¢  x5m=2.5mm

At=0
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Problem 5.3. Thin Steel Plate

| 1 —v —v]|[1MPa 5%107°
gy |=g|vV L V| 0 = —1.5x10° | y,,=0
£ -v v 1 0 ~1.5x10°

AL=5%10"°x800 mm=0.004 mm
AW=—1.5x10"°x400mm=—0.0006mm
At=—1.5%x10°x1 mm =-1.5x10"° mm

Problem 5.5. rotation of stress

Tx =86.6025 MPa Ty =50 MPa

Problem 6.1. Finite Element Formulation using triangular elements

1)

2)

3)

g'(xy)=[1 x vyl

14 5
C=|1 0 5
1 2 25
[N, (xy) N,(xy) Nyxy)]=g"(xy)C"
14 57 10 0 20
=[1 x y]|]1 0 5| =[1 x y]% 25 25 0
1 2 25 2 2 4

=[-1+0.25x+0.2y -0.25x+0.2y 2-0.4y]

U(Xa y) = Nl(X! y)ul + NZ(X, y)uz + NS(X, y)ua
V(X1 Y) = Nl(X, y)Vl + NZ(X, y)Vz + N3(X, y)V3

{u(x,y)} [Nl 0 N, 0 N, O}u2
= =

v(X,y) 0 N, 0 N, 0 N;jv,
, )

u(x) NE (x) U,

V3
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- 0
OX
N, 0O N, 0 N, O
BE=LN®=| 0 3[01 N 02 N 03 NI 0 0.20
% ! 2 3 0.20 0.25
o 9
Loy OX

A+2G A 0 120 80 0
2) D= A A+2G 0 |=| 8 120 O |MPa
0 0 G 0O 0 20

5)

K¢ = j B*'DB%dV = B*"DB°At

V,

e

[ 415 25 -335 15 -8 —40]
3025 -15 17.75 -10 48

415 25 -8  40|MPa

3025 10 48| m

Sym. 16 0

Problem 7.1. Thermal load

—

-T, _h

n (T, - T
L k ( in 1)
-T, h
L 2 :%(TZ_TOUI)
— T,=5.54°C
T,=4.82°C =

T,-T
q:k¥:144.6ﬂ
L m?

Tl

Problem 7.2. Thermal load 2
1) Q=50 kwatts/m?

d°T_ Q dT
2 gk O Gl
x=L
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3) T(X)= % X(2L—x)+T,
d°T_ Q dT

—=-= T(0)=T, -k—| =h/(T(L)-T
4) dX2 k ( ) 0 dX - c( ( ) ref)

Q L2hC —(T, —T,)h.+ QL
__Q 2, 2k
T(X)= X+

2k k+hL

X+T,

Problem 7.4. Finite different solution of the transient heat equation
Finite different solution

Ku=0-+F
= M =Ku-F
At
= u(t+At)=u(t)+(Ku — F)At
> U, (tAD=q (A — Fy (0 + B [u0(0)+u, ,()~2u ()] where p = SoF
Z

The solution is numerically stable win B <1/2. If p =1/2

= U; (t+At):Fj O+ %[uﬁl(t) U, ®]

Problem 7.5. Finite element solution of the transient heat equation
Weak form

L * L

ou ou «, 0U
C =|u (— = F(x,t)dx
fc. j (— ~FOxD

j=1
Replacing in the weak form
n L dU- L
D NiNjdx [—2 = [ N F(x.tydx
= dt
- Ku=Cu+F

_ Ut AY—uO g
At
= u(t+At)=u(t) + C*(Ku - F)At
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Problem 8.1. Structural mechanics: bending of beams

24E|
b)

Only approximate:
e Exact solution is a fourth order polynomial.

e Approximated finite element solution is a third-order polynomial.

Problem 8.2. Structural Mechanics: bending of cantilever beams

3)

i(EI dz_v}: v(0)=0, 6(0)= d_v
X dx

x=0

V(X)= W s & x*+ &xz +C x+C,
24El 6 2

Applying boundary conditions

v(0)=0 = C,=0
0(0)=0 = C,=0

d?v

=0, M(L)=—-EI—| =0, Q(L)=-El—
(L) e QL) e

x=L

P wL P B P+wL

VI"(L): — E = E"‘Cl: — E

n — WL2 — —
V(L)=0 = - +CL+C,=0= C,= ~C L -

=C,= =l

Replacing the constant into v(x)
2
v(x)=lx4 _ P+wL i 2PL+wL: 2
24El| 6El 4EI

Deflection
2
V(x)= w * _ P+wL H 2PL+wL 2
24El 6EI 4E|
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d*v

x=L

_ 2PL+wL?

2El El 2El
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Rotation
2
0(x)= g_V: w s Prwl , 2PL+wl”
X

6EI . 2EI 2|
Curvature
de w , P+wL  2PL+wl?
K(X): - = X"+ X —
dx 2El El 2El
Moment
2
M=E = —%Xz + (P+WL)x — 2PL+wL
Shear force
M
- M w(lL-x)+P
dx
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0 0.6 1 1.6 2 2.5
X (m)

8000 T T T T

-6000

M (Nrm)

-10000

-16000 ' ! ' '
0 0.6 1 1.6 2 2.6

x (m)

4200 T T T T

4180 | 4

QM
&
a
T

1

4080 - -

4000 ! ! ! l
0 0.5 1 1.6 2 25

x ()

Problem 8.3. Rotational stiffness of bended beams
Equilibrium equation

d?v X
EI ? - Ml+(M2 - Ml)E
Integrating
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MZ_MIX3+M x? +Cx+C,
6EIL 2El

Using boundary condition Vv(0)=0 v(L)=A

v(X)=

v(0=0= C,=0

A L M -M
V=8 = =T (Rt

iy
_|_

iy

N

Replacing into the solution
MZ_M1X3+Mlx {A L M,-M, %)}x

6EIL 2F| TR

V()= L El

Taking the derivative we get the rotation

9(x)=M2_M1x2+M é_L(M -M, Ml)
2EIL El L El 2
Calculating the rotation at the end points x=0 and x=L
(91=%+L(M2 +2M,)
0 —é+—(2M +M,)
L 6EI '

The solution is
M, = 28l 20, +90, _34
L L

M, = ZEI(O +20, 3A)
L L

Problem 8.4. Frame buckling using beam elements

1.
B 7El
c (kL)Z
where L is the actual column length. The factor k relates the column in the frame to the simple
“Euler” case of a pin-ended column of length kL.
2.
Using the slope-deflection equations (below) o, = BEI + GEI = 95'
3.
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Considering one column, stiffness at base is zero, at top:
3El 6El 9EI
G‘B = + =
L L L
k is the column effective length factor. Also,
M,=0 AM_,=-PA |
The second equation

PL
Qg

T T T T
M ,(1-—cosec—)+ M +1-—cot=)+PA=0
A( k k) B( k k) c

Reduced to

PL » .«
< ——cot—
a; ko k

We obtain

T 7T
— =9cot(—
k (k)

=0

Which is solved using Newton-Rapson or graphically. The result is k = 2.22

o _3EI+2EI=5EI
Using the slope-deflection equations (below) —° L L L

Considering one column, stiffness at base is zero, at top:
3El  2El 5EI
Qg=—+t—=
L L L .
k is the column effective length factor. Also,
M,=0and A=0
Using the second equation

MA(l—zcosecz) +M B(&H—zcotz) +PA=0
k k ap k k

We obtain

AL +1-ZcotZ =0
oy k  k

thus
T
—cot(—) -1
KT
T 5
(E)Z
Which is solved using Newton-Raphson or graphically. The result is k = 0.80377
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Problem 9.1. Isoparametric formulation of high-order 1D element

1

1 -1 17
[N, N, NJJ=[1 n w°]j1 0 0
111
0 10
1 1
=1 “IN-= 0o =
1wl 0 2
1,41
L 2 2]
1 1, 51 12}
=l—=n+=-1,1-1",=n+=
{2“ SNl on+ o

Problem 9.2. Numerical error in isoparametric formulation

1. Domain Large, due to the approximation of the circular hole by a hexagon.
approximation error

2. Computational error ~ Zero, because the elements of the stiffness matrix are calculated
analytically (all integrals have exact solution)
3. Piecewise polynomial Large, stress of the finite element solution is constant in each element.
approximation error

Problem 9.3. Thin plate with a hole

1)
Boundary x-displacement (u) y-displacement (v) Traction (T)
Top Free Free 0
Bottom Free Fix 0
L eft Fix Free 0
Right Free Free (1MPa,0)
Hole Free Free 0
2)
Mesh | Domain approximation Computational error Piecewise polynomial
error approximation error
Small: Due to the Large in the transition Relatively small near to the
approximation of the elements which is outside of | maximal stress. The error is
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hole by a reasonable
1 number of quadratic
functions

the region of interest. Small
in the other elements.

due to the exponential change
of stress that needs to be fitted
by linear relations.

Very small: Due to the
approximation of the
5 hole by a large number

quadratic functions

Small due to the low
distortion of the elements but
large at the transition zone
due to mesh incompatibility.

Relatively small near to the
maximal stress. The error is
due to the exponential change
of stress that need to be fitted
by linear relations.

Very small: Due to the
approximation of the
3 hole by a large number

quadratic functions

High in the domain of
interest, due to the high
aspect ratio of the elements

Large near to the maximal
stress, due to the relatively
large size of the elements.

Problem 10.1. Spectral Response
1.

For the top mass:

_kl(xl - Xz) =mX, .. _k1X1 + k1X2 =mX

For the bottom mass:

kl(x1_xz)_k2X2 = mxz k1X1_(k1+k2)X2 = mzxz

Writing these equation in a matrix form

_kl

5wl o

The matrices can be calculated using the given values

12 0 5 200
m = x10°kg K=
0 24 -200

We solve the characteristic equation
det(K -&’m)=0

k -k 0 — @?
= det —o?| " = det kK=o'm
-k 3k 0 2m —k

= (k—o’m)(3k —20°m)—k* = 2k

—200 | kN
300 | m

—k

—50°mk + @*'m? =0
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=0
3k—2a)2m}




o = /2—k 5775 =T, = 2% ~1.09s
m )

®, = /ZL 28950 =T, = 2% 2185
m w,

Mode 1
KX, - a)fMXl =0

(N N M R H R e

Mode 2
KX, —a)‘fMX2 =0

1 sl o amflao=1% aalo=e-m=x]]

You are free to choose any value of a, here we choose a=1.

S M B
I Y R
L L R

Maximal response of each mode

. 1 1
=[S (T,)=—=x1g==
¢1,ma>< 1 a( 1) 3X g 39

; 5
¢2,max = FZSa (TZ) ~ __XO'7g = 1_ g
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Combination of the mode using the absolute sum

xmax = ¢lmax maX|X1| +¢‘2,max |X2|
1 7
= g g\/§+ﬁ g\/g

You can check that your answer does not depend on a
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