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PREFACE 

 

This course aims to provide a modern formulation of finite element analysis for modelling engineering 

systems. The main idea of modelling is to use physical principles and mathematics to arrive at an 

approximate description of phenomena. These phenomena span a wide range of situations in civil 

engineering that demand predictive capabilities. A few examples: material behaviour of human-made 

materials, stability of structures, and transport of heat, water, or contaminants. In structural engineering, 

one of the responsibilities of the design engineer is to use predictive tools to devise arrangements and 

establish proportions of members – to withstand, economically and efficiently, the conditions anticipated 

over the lifetime of a structure. In environmental engineering the description of phenomena is used to 

improve the natural environment, to provide healthy water, air, and soil for humans and ecosystems, and 

to remediate pollution produced by human activities. 

 

Mathematical modelling complements methods based on empirical experience. Empiricists base their 

formulae and design decisions on experimental analysis, and this approach can be very competitive and 

effective if the analysis is carried out properly. Repeatability, rapidity, and reliable accuracy are among its 

strengths; but the major disadvantage of the empirical method is that it usually yields only one data point 

of information in the spectrum of the physics involved. If the system is changed from the originally tested 

specimen (perhaps in dimensions, materials, or loading conditions), the experiment needs to be repeated 

on the new structure. The costs can be prohibitive. 

 

Experiments should be used as the starting point of any investigation. Results of experimental tests 

provide a window of insight, and hence clues to the behaviour of the structure and the phenomenon 

governing it. The best engineering approach to a problem is to evolve mathematical methods based on 

mechanical principles and experimental insight, and to use empirical methods for the ultimate verification 

of any theoretical or numerical solutions obtained through modelling. 

 

Development of mathematical models leads to a set of differential equations called governing equations. 

In just a few cases it is possible to solve these equations analytically. With analytical expressions we 

achieve explicit derivation of unknown variables in terms of the known parameters using well-known 

mathematical functions. These expressions are closed form solutions, and often they make strong 

assumptions – such as perfect elasticity, and extremely simplified geometry. But real engineering 

problems often require a detailed description of the geometry of systems, like the cross section of a beam 

or a retaining wall; or they may be insoluble without a complex specification of material behaviour, 

perhaps with non-linearity or irreversibility. In these cases elegant analytical solutions are not available. 

We use numerical analysis instead, which involves the use of algorithms implemented on computers to 

arrive at approximate solutions of the governing equations, to the necessary degree of precision. 

 

Thanks to the rapid increase of computer power, numerical analysis is one of the fastest-growing areas in 

engineering. Finite element modelling is among the most popular methods of numerical analysis for 

engineering, as it allows modelling of physical processes in domains with complex geometry and a wide 

range of constraints. The basic idea of finite element modelling is to divide the system into parts and 

apply the governing equations at each one of them. The analysis for each part leads to a set of algebraical 

equations. Equations for all of the parts are assembled to create a global matrix equation, which is solved 

using numerical methods. The beauty of finite element modelling is that it has a strong mathematical 
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basis in variational methods pioneered by mathematicians such as Courant, Ritz, and Galerkin. The 

people who actually elaborated the method were engineers working toward greater stability for fuselages 

and wings of aircraft. In 1943 Richard Courant (in the United States, having left Germany early in World 

War II) came up with the first finite element modelling using nothing more than high-school 

mathematics. In 1960, John Argyris (University of Stuttgart) leaded a large group of mathematicians and 

engineering that established the mathematical basis of the method to allow its application to problems 

beyond structures, such as seepage analysis, heat transfer, and long-time settlement. 

 

In the sixties, the golden age of finite element modelling, scientists and engineers pushed the boundaries 

of its application, and developed ever more efficient algorithms. Nowadays, finite element analysis is a 

well-established method available in several commercial codes. But numerical analysis research has not 

stopped there! In the area of fluid mechanics mesh-free methods have been proposed, which do not 

require the mesh used in finite elements. Discrete element methods have been developed with the aim of 

investigating systems of many parts interacting via contact forces. Enthusiasm for these models has 

spilled beyond the borders of science and engineering. We are entering in a new era of virtual reality 

(VR), where it is difficult to distinguish reality from simulations.  VR are now used in computer games, 

have inspired movies such as Matrix, and has suggested that we may actually be part of an interactive 

computer simulation. Such fascinating advances in computer modelling would be impossible without the 

exploitation of our infinite analytical capabilities to reshape the vision of the word using computers. 

 

Welcome to the fascinating world of the numerical modelling! 
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CHAPTER 1: MATHEMATICAL FOUNDATION OF FINITE ELEMENT ANALYSIS 

 

  

MATHEMATICAL FOUNDATION OF FINITE ELEMENT 

ANALYSIS 

 

In this chapter we introduce the key concepts of finite element analysis by considering few one-

dimensional problems. The formulation includes three steps. The first step is the derivation of the 

governing equations of the problem along with the identification of its boundary conditions. The second 

step involves the conversion of the governing equations into a weak form that allows the formulation of 

the finite element theory. In the third step we subdivide the domain of the system into a set of discrete 

sub-domains that are called elements, and we define the shape functions in each element. By expressing 

the seeking solution in terms of those shape functions, the governing equations are converted into a global 

matrix equation that is solved numerically. This is the essence of all finite element methods. 

1.1 Governing equations: strong formulation  

The first step towards the mathematical modelling of any problem in science or engineering is the 

derivation of the differential equations of the quantity that needs to be solved. This quantity can be the 

displacement on a building under wind load, the temperature in an electrical circuit, the distribution of 

pore pressure in a dam, or the electro-magnetic field produced by an antenna. In most cases these 

equations can be assembled using four different components. 

 

1) Kinematic equations, describing the gradient (derivative) of the variable we want to solve. For 

example: the gradient of the displacement is the strain, and the gradient of the head is the 

hydraulic gradient. 

 

2) Balance equations, which are the mathematical expression of the conservation laws in physics. 

Conserved quantities are usually mass, momentum, and energy. For example, for structures in 

equilibrium, the conservation of momentum lead to the so-called static equations; The Naiver-

Stokes equations in fluid mechanics involve conservation of mass and momentum. 

 

3) Constitutive equations, which represent the material properties of the system of study. These 

properties are usually derived from experimental tests. In structural mechanics the constitutive 

model is the stress-strain relation which is given in terms of a stiffness tensor. In transport of heat, 

radiation or pollutants the constitutive models consist on transport coefficients, such as 

permeability in seepage flow, or conductivity in heat transfer. 

 

4) Boundary conditions, which are given in the boundary of the domain of the problem. These are 

required to find a unique solution to the differential equation of the problem 
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(a)                                                                      (b) 

 

 

    

 

                           (c)                                                                      (d) 

 

Figure 1-1 From left to right: (a) the Leaning Tower of St Moritz; (b) the landslide displacements in the 

lower 200 m, (c) the mathematical model to predicting landslide displacement; and (d) free body diagram of 

a slide (Puzrin, A. M. & Sterba, I. (2006). Geotechnique 56, No. 7, 483–489) 

To illustrate the derivation of the governing equations, let us consider a simple mathematical model for a 

complex engineering problem, as shown in Figure 1-1. This example is a simplification of the powerful 

mathematical formulation of Puzrin and coworkers that has capabilities to predict landslides. Our 

example is related to a landslide displacement in Switzerland, which have led to the leaning of the St 

Moritz Tower: the displacement of the inclined slope is constrained by a rock outcrop along the Via 

Maistra, as shown in the Figure 1-1. Geological survey has shown that the deformation occurs above a 

sliding layer, and it is constrained by a rock outcrop at the bottom. For simplicity, we assume that the 

deformation u(x) only occurs in the direction of the slope. We want to derive the governing equations of 

“u” using the method of infinitesimals. First we divide the slope in slides perpendicular to the slope 

direction. Let u(x) and u(x+Δx) be the displacement at both side of the slide initially placed at the position 

x. The width of the slide, Δx, is assumed to be infinitesimally small, which means, very small. 

 

The kinematic equation is nothing more than the definition of strain: 

 

u(x+Δx) u(x)
ε.=

Δx



  (1.1) 
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where ‘.=’ means that the expression is valid when Δx is infinitesimally small. Thus the equation can be 

converted into a differential equation using the definition of derivative 

 
du

ε=
dx

 (1.2) 

This corresponds to the kinematic equation of the problem. 

 

Now we will construct the balance equation assuming that the system is in equilibrium. Since the problem 

is one-dimensional, the equation of conservation of momentum corresponds to the balance of forces in the 

x-direction: 

 
gσ(x)h σ(x+Δx)h+τΔx τ Δx=0   (1.3) 

where σ is the stress acting on the x-direction, also known as earth pressure, τ  is the shear stress acting 

on the sliding layer, and gτ =γhsinα  is the gravity force, and γ is the unit weight of the soil. Eq. (1.3) can 

be rearranged as 

 
gτ τσ(x+Δx) σ(x)

= 
Δx h


  (1.4) 

Since Δx is infinitesimal, the equation above can be converted into 

 
dσ

=  f(x)
dx

  (1.5) 

where f(x) is the external loads apply to the system that in this case consists of a gravitational load minus 

the shear stress at the bottom of the boundary. This equation corresponds to the static equation of the 

problem. 

 

We notice that Eq. (1.2) and (1.5) are not sufficient to obtain the displacement profile of the slope. We 

still need an equation that relates stress and strain that is precisely the constitutive equation of the 

problem: 

 σ=Eε  (1.6) 

E is the Young’s modulus that gives the material property of the soil. It can depend on the position for 

non-homogenous soil, or on the stress for non-linear materials. Now we can combine Eq. (1.2), (1.5) and 

(1.6) to obtain the governing equation of our problem:  

 
d du

E =  f(x)
dx dx

 
 

 
 (1.7) 

If the soil behaviour is not lineal, (i.e. E does not depend on σ) this equation can be directly integrated to 

obtain the displacement along the landslide. We should not forget that every time we integrate we obtain 

an integration constant, which lead us to an indeterminate solution of our problem. In order to obtain a 

single solution we need to complete Eq. (1.7) with the so-called boundary conditions. They correspond to 

the condition of the unknown variable u at the boundary of the domain. Since our slope is constrained by 

a rock outcrop at the bottom, and free to move at the top, the boundary conditions are 

 
x=L

du
u(0)=0       and     =0

dx
 (1.8) 

where L is the length of the landslide. The first condition is called essential or fixed boundary condition. 

It states that the displacement at the bottom of the slope is always zero. The latter one is called natural, or 



 

11 

 

free boundary condition, and it comes after using Eq. (1.2) and (1.6), and the fact that σ=0 at the top of 

the landslide. If the soil is homogeneous and linear (E= cte) and the top boundary is at the critical state 

n(τ=σ tan(φ) , where nσ =γhcosα  is the normal stress φ is the angle of friction of the soil), an analytical 

solution exists for Eq. (1.7) with boundary condition given by Eq. (1.8) 

 
 γ sin(α) cos(α)tan(φ)

u(x)= x(2L x)
2E


  (1.9) 

Note that to obtain this analytical solution we require several strong assumptions, such as one-

dimensional deformation, linear elastic soil, and a sliding layer of zero thickness at the critical state. In 

practice we cannot always depend on too strong assumptions. If we relax the assumptions the resulting 

governing equation does not have analytical solution. That is where numerical solutions take place. Eq. 

(1.7) for non-linear material behaviour could in solved replacing the derivatives by finite differences. This 

leads to a set of algebraic equations that can be resolved numerically. This is the essence of the finite 

differences method that is useful for systems with simple domains. Yet several real-world problems 

involve complex domains and the finite different method become problem dependent. The boundary 

conditions are much simpler to plug in finite element modelling. Here is where the power of the finite 

element modelling appears, as it provides a unified framework for solving the governing equation of a 

wide range of problems for any kind of domains and boundary conditions. We will present below the key 

concepts of finite element modelling which will allow us to understand the general idea of this method. 

1.2 Weak formulation 

We are about to introduce the weak formulation of the governing equations. In structural mechanics, this 

formulation is equivalent to the principle of virtual work. This principle plays a very vital role in 

structural analysis and in the finite element formulation of partial differential equations. 

We want to solve the governing equation plus boundary conditions: 

 
x=L

d du du
E = f(x),      u(0)=0,          =0

dx dx dx

 
 

 
 (1.10) 

The solution above requires to have a second derivative, so that it need to be continuous and with no 

corners. We want to relax this assumption, and find solution that being continuous can have corners, i. e. 

discontinuities in the derivative. Let us define the test function u*(x), as continuous and piece-wise 

differentiable, satisfying the essential boundary conditions of the governing equation. The meaning of this 

test function may appear obscure at this point of the book, but it will be clarified when we arrive to the 

weak formulation. The equation above can be written as 

 

L

*

0

d du
E +f(x) u (x)dx=0

dx dx

  
  
  

  (1.11) 

Now we want to get rid of the second derivatives to allow continuous function with ‘corners’ to satisfy 

the new equation. With this aim we will “integrate by parts” the first term of the above equation. First we 

recall the ‘product rule’ of differential calculus  

  
d dv dw

vw = w+v
dx dx dx

 (1.12) 

Using v=Edu/dx  and w=u* we obtain the following identity 

 
*

* *d du d du du du
E u = E u +E

dx dx dx dx dx dx

   
   
   

 (1.13) 
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this is rewritten as 

 
*

* *d du d du du du
E u = E u E

dx dx dx dx dx dx

   
   

   
 (1.14) 

Replacing this equation into Eq. (1.11) we get 

 

L *
* *

0

d du du du
E u (x) E +f(x)u (x) dx=0

dx dx dx dx

  
   

  
  (1.15) 

Integrating the first term  

 

L L *
* *

0 0

du du du
E u (x) E f(x)u (x) dx=0

dx dx dx

 
  

 
  (1.16) 

and using the boundary condition given in Eq (1.10) on u and u* we obtain the so-called weak formulation 

of the problem 

 

L *
*

0

du du
E f(x)u (x) dx=0

dx dx

 
 

 
  (1.17) 

You may be ask asking yourself right now, what does it mean? Why it is weak? Why is it important? It is 

called weak form because the conditions of the seeking solution u(x) are weaker than in the Eq. (1.10): In 

the weak form, our solution does not need to have continuous second derivative. We only require a 

solution that is continuous and differentiable, so that we can seek piece-wise linear solutions. The weak 

form is also of great importance in structural mechanics because it corresponds to an important principle 

in mechanics: To show that, using Eqs. (1.2) and (1.6) we can write Eq. (1.17) as 

 

L

* *

0

σε fu dx=0    (1.18) 

The first term is precisely the energy done on the system by internal forces after a virtual displacement 

u*(x) consistent to the essential boundary condition. The second term is the energy given by external 

forces due to this virtual displacement. In other words, we have found that the weak formulation 

corresponds to the well-known principle of virtual work. This principle states that the equilibrium 

solution of the system u(x) is such that the internal work equals the external virtual work for any 

displacement consistent with the boundary conditions.  

1.3 Finite Difference Method  

Until now we have introduced the strong form and the weak formulation of the governing equations. The 

strong form can be used to solve numerically the equation using the method of finite differences. On the 

other side, the weak form is the basis of the finite element formulation as we will see in the next section.  

 

In the “finite difference” method, a solution of the basic governing differential equations is sought at 

discrete points within the domain investigated. The domain is divided in segments, (or rectangles in 2D). 

Then the derivative at the nodes of the grid is approximated by a finite difference 

 
du u(x+Δx) u(x)

.
dx Δx


  (1.19) 

The second derivative can be also approximated by a finite difference expression 
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2

x x-Δx

2

du du
  

d u dx dx
.

dx Δx



  (1.20) 

Using both equations above, we obtain a finite difference expression for the second derivative 

 
2

2 2

d u u(x+Δx) 2u(x)+u(x Δx)
.

dx Δx

 
  (1.21) 

We can replace the above equation into Eq. (1.7) to obtain  

 
2Δx f(x)

u(x+Δx)+2u(x) u(x Δx) F(x),   F(x)=
E(x)

     (1.22) 

Lets assume, for example that the domain is the interval [0,L]  and it is divided into four subintervals with 

nodes 0 1 2 3 4x =0, x =Δx, x =2Δx, x =3Δx, x =4Δx=L . If we calculate Eq.(1.22) in each node the following 

equations are obtained: 

 

2 1 0 1

3 2 1 2

4 3 2 3

5 4 3 4

x=Δx     u +2u u F  

x=2Δx    u +2u u F

x=3Δx    u +2u u F

x=4Δx    u +2u u F

   

   

   

   

 (1.23) 

Then the governing equations are converted into algebraical equations, which are completed using the 

boundary conditions.  Thus a pointwise numerical approximation is obtained. The beauty of this method 

is there is that the derivation of the algebraical equation is straightforward. Unfortunately, this feature 

often cannot outweigh its main disadvantage, namely that the method is not very tolerant of irregular 

boundary conditions as shown in Figure 1-2 for 2D grids. The other problem is that the conversion of the 

boundary conditions into algebraical equations is not always easy and it needs special treatment in each 

case. 

 

 

 

 

Figure 1-2 Discretization of a turbine blade using (a) finite difference method and (b) finite element method 

[after Hubner, 1942] 
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1.4 Finite Element Method  

A more flexible technique to handle boundary condition is the “finite element method”.  This method was 

born from the family of spectral methods, in which the solution is sought as a linear combination of well-

known, elementary function –the Fourier analysis is a sister of the finite element method, but the later one 

proved to be much more computationally efficient. 

 

Similar to the finite difference method, the domain of the problem is discretised into smaller sub-regions 

that are commonly known as finite elements, see Figure 1-2b. Then we define a shape function sitting in 

each node, and vanishing in all elements that do not contain the node. Untimately the shape function will 

allow us to interpolate the nodal displacements at any point between the nodes. The simplest option is to 

assume that each shape function is what we call a ‘hat function’, i.e. a function that is one in the node and 

decreases linearly to zero in the neighbour nodes. Then we seek a solution as a linear combination of the 

shape functions 

    
dofn

i 1

i iu u N=


x x  (1.24) 

where the sum goes over all “degrees of freedom” (dof) of the system. As a final result a piecewise linear 

approximation to the governing equation is arrived at, whose solution is obtained by finding the 

coefficients iu . Very complex domains can be modelled with relative ease (Figure 1-2b) using triangles as 

finite elements.  However, we should notice that if we plug Eq. (1.24) into the governing equation Eq. 

(1.10) and immediate problem is encounter: our shape functions has corners at the node, and we try to 

differenciate them twice, our equation will produce infinites at each nodes that rules out a solution in the 

form of Eq. (1.24). 

 

Historically many mathematicians encountered the same difficulty until the brilliant idea of Galerkin 

(Russian Mathematician and Engineer) came. The idea of Galerkin was to use Eq. (1.24) to find an 

approximate solution of the weak form of the governing equations instead. We will introduce the 

Galerkin method by formulating the finite element method in one dimension. The basic procedure is 

essentially the same for two and three-dimensional problems: 

 

1. Decompose the domain into a set finite elements;  

 

2. Define a set of shape functions, each one sitting in what are called nodes of the finite elements;  

 

3. Unknown field variable u(x) is expressed as a linear combination of the shape functions;  and  

 

4. The governing equation is transformed into a matrix equation that is solved to obtain coefficient of 

the linear combination. 

 

Domain Discretisation 

The domain of the slope problem is the interval [0,L]. Let us divide the interval into four elements (e1, e2, 

e3, e4). These elements will be joined by five nodes (x0, x1, x2, x3, x4). We seek and approximate solutions 

at the nodes given by ui=u(xi), i=0,1,..4. The natural question is how many element we need to use. The 

general rule is that as more elements we use more accurate will be the solution but more calculations need 

to be done. But in the practice we need to use smaller element in those part of the domain where we 

expect the solution will change more abruptly. In analysis of structures this happens near to the holes or 

the interfaces where different bodies interact. 
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Figure 1-3 Left: hat shape function in finite element analysis Right: derivatives of the hat functions 

 

Global shape function 

After discretisation we seek for a solution of the Eq. (1.17) on the domain. The main idea is to sit a shape 

function in each one of the nodes, (Figure 1-3) and then express the virtual displacement as a linear 

combination of them. Each shape function will account for deformation at one node, and the total 

deformation is expressed as a linear combination of the shape functions. In particular, Eq. (1.17) will be 

valid for u*(x)=Ni(x) (i=1,2,3,4). Thus Eq. (1.17) is written as: 

  

L

i
i

0

dNdu
(E    fN )dx=0     where i 1,2,3,4

dx d
x

x
( )   (1.25) 

 

Linear combination  

The function u(x) is expressed also as a combination of the shape functions: 

            
4

2 2 3 3 4 4

i=1

1 1 i iu x = x +  x + x + u N u N u N N N xux =u   (1.26) 

If we use shape function as the hat shown in Figure 1-3, it is easy to show that ui is the deformation at the 

ith-node. 
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Global matrix equation  

Replacing Eq. (1.26) into Eq. (1.25) we obtain a global matrix equation 

 
4

ij j i

i 1

K Fu =


  (1.27) 

 

L

i
ij

0

jdNdN
K = E dx 

dx dx  (1.28) 

  
L

i i

0

= f(xF ) N x dx  (1.29) 

The FEM solution consists of calculating the elements of the ‘stiffness matrix’ Eq. (1.28) and the load 

vector in Eqs. (1.29). Expresed in matrix form, Eq. (1.27) becomes 

 

L L L L

0 0 0 0

L L L L

0 0 0 0

L L L L

31 1 1 2 1 1 4

32 1 2 2 2 2 4

3 3 3 3 3

0 0 0 0

1 2 4

4

dNdN dN dN dN dN dN dN
E dx E dx E dx E dx

dx dx dx dx dx dx dx dx

dNdN dN dN dN dN dN dN
E dx E dx E dx E dx

dx dx dx dx dx dx dx dx

dN dN dN dN dNdN dN dN
E dx E dx E dx E dx

dx dx dx dx dx dx dx dx

dN dN
E

dx

   

   

   

 

 

 

 

L

0

L

0

L

0

L L L L L

11

22

3 3

31 4 2 4 4 4

0 0 0 0

4 4

0

f(x) N x dx

f(x) N x dx

f(x) N x dx

dNdN dN dN dN dN
dx E dx E dx E dx f(x) N x dx

dx dx dx dx d

u

u

  

x dx d

u

u
x

= 

   
    
    
    
    
    
    
    
    
    
    
     
      







    

 

 

A simple calculation of integrals using the derivatives of the shape functions plotted in Figure 1-3,  

should show that if   0E x =E  and   0f x =f , the global matrix equation is given by 

 

1

20
0

3

4

u2 1 0 0 1

u1 2 1 0 1E
 = f Δx     =

u0 1 2 1 1Δx

u0 0 1 1 1/2

     
    

 
     
     
    

    

Ku F  (1.30) 

We notice that our smart selection of the shape function concentrated at the nodes allow us to obtain a 

banded matrix with zeros outside of the band. This simplifies the calculation of the inverse. The finite 

element programs have a solver that is in charge of inverting the stiffness matrix to find the solution at the 

nodes as 

 
1= 

u K F  (1.31) 

 

Finite element solver 

Most of the computational work involved in a finite element software lies in the inversion of the stiffness 

matrix.  The part of the program that does this inversion is called solver. The first steps that the solver 

needs to check is whether the determinant of the matrix is different from zero.  If it vanished the matrix is 

singular, which means that it cannot be inverted. In other words, we do not have a unique solution of the 

problem, or we may not have any.  Singular matrix appears when the boundary condition is not ‘well 
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posed’. This is the case for example, when the boundary conditions are free at both ends of the domain.   

Singular matrices appear also when the material properties of the materials such as Young modulus of 

thickness of the materials are entered with zero values. This is a common mistake of beginners. 

 

The second problem that may be encounter by the solver in problems with large matrices is that the 

computer needs too much time to invert the matrix. This usually happen when the elements are not 

properly indexed, leading to sparse matrices. Ideally we want that the elements of the stiffness matrix 

vanish above a certain distance from the diagonal that is called bandwidth.   

 

A typical finite element program consists of three basic units: pre-processor, processor and post-

processor. In the pre-processor the geometry of the problem, the boundary conditions and material 

parameters are entered into the program. The processor generates the elements, assembles the stiffness 

matrix, and inverts it using the solver. The last component of the program is the post-processor that 

computes the solution and its derivatives and print or plot the results. In this book we will focus on the 

theoretical aspects of the implementation of the finite elements within the processor. We focus not only on 

structural problems, but also in non-structural cases such as seepage analysis and thermal conduction 

problems. We will focus the so-called static solvers that give solutions of static problems. However, you 

shall bear in mind that there are solvers for many situations, such as buckling analysis and dynamics 

systems.  

1.5 Variational principle: minimal form 

The principle of virtual work can be derived from a variational formulation. This formulation leads to a 

wide range of numerical methods to find equilibrium configuration of complex systems, such as the 

configuration of DNA molecules. One of these is the finite element method that we have derived from the 

virtual work principle. 

 

Here we present an alternative to derive the weak formulation which is based on energetic principles. The 

method calculates the energy E(u) of the system in a configuration given by the displacement function 

u(x). Then the equilibrium of the solution is assumed to be that one that minimizes the energy.  This 

formulation is useful when we are interested in the equilibrium of the system, which is the case of most 

structural analysis problem. If we want to investigate the transient dynamics we need other methods. The 

variational  formulation defines the ‘energy’ as a ‘functional’ –it means, a function whose argument is a 

function, and whose value is a real number, which in this case represents the energy: 

  
2L

0

1 du
E =  ( E  + fu)dx

2 dx
u

 
 
 

  (1.32) 

We seek for the function u(x) that minimizes the energy.  This can be done by using the ‘variational 

derivative’. 

 
*E(u+εu ) E(u)

0E'(u).
ε


  (1.33) 

 

Where u*(x) is a ‘test function’ that satisfies the essential boundary conditions of the problem. 

Replacing Eq. (1.32) in Eq. (1.33) we obtain: 

 

L *
*

0

du du
(E fu )dx 0

dx dx
   (1.34) 
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This corresponds to the weak form. We can also derive the strong formulation for Eq. (1.34). By 

integrating this equation by parts, 

  
L L* 2 L

* * * *

0
0 0

udu du d du
0 (E  fu )dx   E u +fu dx+u x

dx dx dx dx

 
   

 
   (1.35) 

Using the boundary condition it leads to 

 

L

*

0

d du
E +f(x) u (x)dx 0 

dx dx

  
  

 



  (1.36) 

Since this equation is valid for any virtual displacement we can assume that the integrand vanish in all 

points 

 
d du

E +f(x)=0
dx dx

 
 
 

 (1.37) 

This corresponds to the strong formulation. We can conclude that the governing equation of an 

engineering problem can be written in three different forms: the strong form that is used in the finite 

differences method to achieve a point-wise approximation; the weak form that allows the finite element 

formulation and a piecewise linear approximation; and the minimal form, which allow numerical 

solutions using a wide range of variational methods that are not covered in this book. 
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Problems 

 

Problem 1.1. Finite different solution 

This question is related to the governing equation of the constrained landslide problem 
2

0 02

d u
E = f

dx
  

x=L

du
u(0)=0       and     =0

dx
 

Where E0 is the Young modulus of the soils, f0 is the external forces per unit of length, and u(x) is the 

displacement we want to obtain. Find the analytical solution of this equation. Here we will compare this 

result with the numerical solutions from the finite difference method and the finite element method. 

Divide the space domain of the landslide in four equally-spaced intervals with nodes  

0 1 2 4x =0, x = x, x =2 x, ,x =L    

Show that the finite different method (FDM) matrix equation of the governing equation is given by  

 

1

2
2 0

3 0

4

u2 1 0 0 1

u1 2 1 0 1f Δx
=

u0 1 2 1 1E

u0 0 1 1 1

     
    

 
    
     
    

    

 

 

 Solve this equation by inverting the matrix, and find the displacement at the nodes. 

 

Problem 1.2. Finite element solution 

For the differential equation in Problem 1.1, construct the global matrix equation using the finite element 

method (FEM). You have to do the following 

 

1) Calculate the integrals for K11, K12, K13, K44, F1, and F4. 

2) Using these calculations to show that the matrix equation is given by 

 

1

2
2 0

3 0

4

u2 1 0 0 1

u1 2 1 0 1f Δx
=

u0 1 2 1 1E

u0 0 1 1 1/2

     
    

 
    
     
    

      
 

Invert the matrix to solve the displacement of the nodes.  

 

Problem 1.3. Numerical errors 

Compare the numerical solutions of both FDM and FEM with the analytical solution. What is the 

numerical error of the solution in each case? How does the numerical error change if the number of 

elements is duplicated? The numerical error is the difference between the exact solution and the 

numerical solution. 

 

Hint: to compare the numerical solutions, you can work with dimensionless variables by assuming that 
2

0 0f L /E =1  and L=1  
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Problem 1.4. Settlement of soils 

A soil layer of depth H [m] over a rock bed has a uniform unit weight γ [kN/m3] and a Young modulus 

E(x) [kN/m2] that varies with depth, see figure. A uniform load P [kN/m2] is applied on the surface. The 

soil deforms due to the combined action of its weight and the surface load. The deformation due to the 

surface load is called settlement.  
 

L>>H 

H 

P 

 E(x) 
 γ 

x 

0 

Rigid bedrock 

Soil 
layer 

 
 

 

1)  Derive the kinematic equation of the problem 

2)  Write down the constitutive equation of the problem 

3)  Derive the balance equation of the problem, Assume that settlement and compression stresses are 

positive. 

4)  Derive the governing equations along with the boundary conditions.  

5)  Obtain the analytical solution for the soil deformation, settlement, total strain, and total stress, in the 

case of homogeneous soil E(x) = E0. 

 

Problem 1.5. Steel bar with variable area  

A steel bar (E=200 GPa) is fixed to a wall as shown the figure. The bar is pulled by a horizontal force 

P=1000 N applied at the right. The area changes linearly from 0.01 m2 to 0.0064 m2.  The length of the 

bar is 1m. This problem is about finding the horizontal displacement along the bar. It is assumed that 

displacements in the right direction are positive. 

 

 
 

1)  Derive the governing equations of the deformation of the bar.  

2)  Derive the weak form of the governing equations.  

3)  Find the global matrix equation with three linear elements.  

4)  Find the finite element solution of the problem 

5)  Derive the analytical solution for the problem. 

 

  
 

0A
LA

L

E
P
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Problem 1.6. Analytical modelling of constrained landslides 

The governing equation for the displacement of the landslide in Section 2.1 is  

gτ τd du
E =

dx dx h

 
 

     x=L

du
u(0)=0       and     =0

dx
 

 

Where E is the Young modulus of the soil, τ the shear stress acting on the sliding layer; h the depth of the 

sliding layer; and 
gτ =γhsinα  the gravity force; γ is the unit weight of the soil and α is the angle of the 

slope. 

 

1) Show that if the soil is homogeneous and linear (E= cte) and the soil at the sliding surface is at the 

critical state ( τ=γhcos(α)tan(φ) , where φ is the angle of friction of the soil), an analytical solution exists 

for the boundary condition.  

 

 0u (x)=γ(sin(α)-tanφcos(α))x(x-2L)  

 

2) Use the Matlab function spdiags to construct the stiffness matrix for 10, 100 and 1000 elements in both 

FEM and FDM formulation. Solve numerically the global matrix equation. Compare the analytical 

solution to the numerical solutions, and determine the error of the approximation as a function of the 

number of elements. 

 
3) Assuming a viscoelastic constitutive relation between earth pressure and the strain 

 

u
p=Eε+ηε         ε=

t




 

 

show that the displacement is a the following function of position and time 

 

 -Et/η

ou(x,t)=u (x)(1-e )  

 

4) Sketch the displacement versus time of the landslide, and earth pressure p along the landslide. Discuss 

whether the landslide will remain stable in the future. 
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CHAPTER 2: FINITE ELEMENT CONCEPT 

 

  

FINITE ELEMENT CONCEPT 

 

In the previous chapter the basic concept of the finite element formulation was introduced, and the 

stiffness matrix was derived using global shape functions. Although the stiffness matrices of a few more 

element types may be obtained using similar procedures, for other types of finite elements, such as 

continuum triangular or rectangular elements, the derivation is not straightforward. Therefore it is 

necessary to develop a general procedure that can be used for derivation of the stiffness matrices of all 

element types. The general method consists of constructing the stiffness matrix of individual elements, 

and then assembly them into a global stiffness matrix of the complete structure. 

 

The aim of this chapter is to introduce this general formulation of the finite element method. The 

procedure will used to form the stiffness matrix of two different element types, bar element and a flexural 

beams element.  

2.1  The principle of virtual work 

We recall the principle of virtual work for a single element of the structure. The principle of virtual work 

states that during any virtual displacement imposed on the boundary of an element, the total work done by 

the external loads Wext must be equal to the total internal work done Wint by the internal stresses σ(x) . 

 
e

e

int ext

*

int
V

*

ext
V

W =W

W = ε (x)σ(x)dV

W = u (x)f(x)dV





 (2.1) 

where f(x) are the external load, and ε*(x) is the virtual strains produced by the virtual displacement
*u (x).The integral goes over the volume of the element Ve = AL, where A is the cross section area and L 

the length of the element.  

 

The virtual work principle can be written in matrix form as: 

 
e e

*T *T

V V
( ) ( )dV= ( ) ( )dV ε x σ x u x f x  (2.2) 

This notation is convenient since stress and strains are generally vector quantities that will be defined in 

Chapter 4. He will use this expression since it is more convenient to derive the finite element formulation. 

2.2 General procedure in Finite Element Analysis 

Most finite element computations in numerical analysis comprise the following steps that will be explained 

in detail along this textbook: 

1. Chose a suitable coordinate system. While for many of the geometries a Cartesian coordinate is suitable, 

a cylindrical coordinate system may be used for problems with axial symmetry. 
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2. Divide the geometry of the problem into a number of finite elements. Different types of elements may be 

used to represent differences in physical properties. In structural mechanics, these can be beams, cables, 

plates, bricks, etc. 

3. Use a suitable node numbering system for the elements of the structure.  

4. Derive the element matrix equations for all finite elements using the principle of virtual work (or the 

principle of minimum potential energy). These equations are typically in the form of: 

 e e e = k u f  (2.3) 

where ke is the element stiffness matrix, ue is the vector of element nodal displacements, and ef is the 

vector of element nodal forces. 

5. Assemble the global stiffness matrix for the complete structure from the stiffness matrices of the 

individual finite elements, and the global force vector to form the element nodal forces: 

 Ku = F  (2.4) 

where e

e

K K  is the global stiffness matrix, u is the vector of global nodal displacements, and 

e

e

F F  is the vector of global nodal forces. The matrices eK and eF are ‘inflated’ versions of ke and 

ef , as we learn in the next chapter. 

6. Apply boundary conditions by eliminating equations related to nodes with zero displacements. The 

method will be explained in the next chapter. 

7. Solve the global stiffness equations to obtain the unknown nodal displacements: 

 
-1= u K F  (2.5) 

8. Compute the relevant physical quantities in all elements: stresses, strains, curvature and moments. 

The calculation of the element stiffness matrix, ke, is an important step in the finite element computations 

and therefore is dealt with in detail in the next section.  

2.3 Element stiffness matrix of the one-dimensional bar element 

A general procedure is presented here that can be used for derivation of the stiffness matrix of various 

finite elements. The aim is to relate the nodal loads to the nodal displacements, and thereby define the 

element stiffness matrix. 

 

Different types of elements have different numbers of nodes and different numbers of degrees of freedom 

per node. Therefore the size of the stiffness matrix is generally different for different element types. In 

most structural analyses the term degree of freedom may be regarded as the different modes of 

displacement at each node. However, in general, the term "degree-of-freedom" is applied to any nodal 

quantity such as displacement, rotation, temperature, hydraulic head, etc. If the number of nodes in the 

chosen finite element is nne and the number of degree of freedom per node is dof, then the total degrees of 

freedom for the element is ndof = nne  dof. The size of the element displacement vector, ue, and the 

element force vector, fe, is equal to ndof and the size of the element stiffness matrix, ke, is equal 

to ndof  ndof. The element stiffness equations are defined by: 

 e e e  k u f  (2.6) 
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The specific case considered here is a two-node bar element shown in Figure 2-2 Similar to the element 

of the constrained landslide, we assume that this element can only carry axial loads. The rotation and the 

deflection normal to the element axis are assumed to be zero. For this element nne=2, dof=1, ndof=2, and 

therefore the size of the stiffness matrix is 22. The linear shape functions for this element are plotted in 

Figure 2-2. 

 

 

 

 1 2 u2, p2 u1, p1 

x L 
0 

x1 x2 

 

Figure 2-1 Two-node bar element 

 

1 2

xx1 x2

N(x)

1

N1 N2

0
 

Figure 2-2 Two-node bar element 

 

The matrix equation of this element can be calculated in the same way then in Chapter 1 

 

 

1 1 1 2

1 1

2 1 2 2
2 2

L L

0 0

L L

0 0

dN dN dN dN
E dV E dV

dx dx dx dx

dN dN dN dN
E dV E dV

d

u p

  = 

x dx dx
p

d
u

x

 
    
    
    
        

  

 

           (2.7) 

 

Here the dV=Adx, where A is the area of the bar. If the young modulus and the body forces are uniform, 

Eq. (2.7) Error! Reference source not found. becomes 

 
1 1

2 2

u p1 1EA

u p
=

1 1L

     
    

     
 (2.8) 

This is the element matrix equation of the one dimensional bar problem. 

2.4 Calculation of the stiffness matrix of a two-dimensional bar element 

The aim of this section is to present an approach to the construction of the element stiffness matrices of 

two-dimensional structures through transformation of coordinates. A structural frame usually consists of 

members set at various angles to one another. Therefore it is more convenient to set up the stiffness 

matrix in terms of the local member coordinates and then transform each of the local coordinate system to 

the global coordinate system adopted for the complete structure.  

 

A two-dimensional bar element which is inclined at an angle θ to the global system is shown in Figure 

2-3. Axes X and Y refer to the local member system and axes x and y to the global coordinate system. In 

a framed structure each end of the bar could be displaced in both directions. The displacements U 

and V, u and v, and the forces P and Q, p and q are related to the local and the global systems, as shown 

in Figure 2-3. 
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Figure 2-3 Two-dimensional bar element 

 

We start with:  

 
1 1 1 1a

2 2 2 2

U P V Q1 1 1 1AE AE
=

U P V Q1 1 1 1L L

l
           

          
           

 (2.9) 

where Ea and El are the axial and lateral Young modulus. In the special case of a truss-element, El=0 that 

reflects the fact that displacement of the nodes does not lead to shear forces. More precisely, the nodal 

forces are always parallel to the bar element so that Q1=Q2=0 

 

We expand the matrices 

 

1 11

1 1 1

2 22

2 2 2

U U 01 0 1 0 P 0 0 0 0

V V Q0 0 0 0 0 0 1 0 1AE AE

U U 01 0 1 0 P 0 0 0 0L L

V V Q0 0 0 0 0 0 1 0 1

a l

           
          


           
          
          

          

 (2.10) 

And then we sum both equations 

 

a a 1 1

l l 1 1

a a 2 2

l l 2 2

E 0 E 0 U P

0 E 0 E V QA

E 0 E 0 U PL

0 E 0 E V Q

     
     


     
     
     

     

 (2.11) 

For the special case of a truss element Ea=E and El=0, so that the equation above reduces to 

 

1 1

1 1

2 2

2 2

U P1 0 1 0

V Q0 0 0 0AE

U P1 0 1 0L

V Q0 0 0 0

     
    
     
    
    

     

 (2.12) 

The local and global systems of forces at each node can be related by Eq. (B.3) in Appendix B: 
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   

   

+cos θ  sin θP p

sin θ  cos θQ q

    
         

 (2.13) 

Thus the relationship between the applied forces in the local and global systems is: 

 

   

   

   

   

1 1

1 1

2 2

2 2

cos θ sin θ 0 0P p

sin θ cos θ 0 0Q q

0 0 cos θ sin θP p

0 0 sin θ cos θQ q

    
    
    
    
    

     

 (2.14) 

or simply: 

 T  F T f  (2.15) 

where F and f are the force vectors in the local and global systems, respectively. 

A similar relationship also exists between the two sets of displacements in the local and global systems: 

 T  Δ T u  (2.16) 

Δ and u are the displacement vectors in the local and global systems 

The stiffness matrix for a member in the global system can now be established. The basic force-

displacement relationship for the bar element, given in Eq.(2.12), states that: 

 e  F K Δ  (2.17) 

Ke refers to the element stiffness matrix in the local coordinate system. Substituting F and Δ from Eq. 

(2.15) and  Eq. (2.16) into Eq. (2.17) results in: 

 T T

e  T f K T u  (2.18) 

Both sides of the above equation are multiplied by T. 

 T T

e  TT f T K T u  (2.19) 

One useful property of the T matrix is that its transpose is equal to its inverse, i.e, 

 T -1 T -1  ,           T T T T T T 1  (2.20) 

Therefore; 

 T

e e     f TK T u k u  (2.21) 

whereby ke is the stiffness matrix of the element in the global system. 

 T

e e  k TK T  (2.22) 

It can be seen that the global stiffness matrix for a member, ek , can be obtained from the stiffness matrix 

of the member in the local member coordinate system. So that the stiffness matrix of the bar elements can 

be written in the global system as shown below. 

 

2 2

2 2

2 2

2 2

c cs c cs

cs s cs sAE
c=cos(θ) ,s=sin(θ)

L c cs c cs

cs s cs s

  
 

  
  
 
   

k  (2.23) 
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Eq. (2.12) can now be written in the global system: 

 

2 2
1 1

2 2
1 1

2 2
2 2

2 2
2 2

u pc cs c cs

v qcs s cs sAE

u pL c cs c cs

v qcs s cs s

      
     

      
      
     
       

 (2.24) 

In the assembly of the global stiffness matrix for a structure, an important point is that the stiffness matrix 

of any member, established in local coordinates, must be transformed into the global coordinate system 

before commencing the assembly process. 

2.5 Calculation of the stiffness matrix of flexural beam elements 

The procedure explained in Section 2.4 is extended here to calculate the stiffness matrix of a flexural 

beam element. Beam elements are the basic members of rigid jointed frames. The derivation of the 

stiffness matrix is presented in Section 8.1, here we just show the results of the calculation. 

 

The beam element considered here has two nodes, a uniform cross-section A, and is loaded by forces and 

moments at each node as shown in Figure 2-4. Each node has to degrees of freedom, the deflection v1 and 

v2 and the rotation of the cross section due to the deflection θ1 and θ2. The beam is assumed to be slender 

so that the effects of shear deformations can be ignored. The effects of axial forces and deformations are 

also ignored here. The sign conventions for the moments M1 and M2 and the shear forces q1 and q2 are 

shown in Figure 2-4.  

 

1 2

v2, q2v1, q1

L

2, M21, M1

x

y

 

Figure 2-4 Two-node beam element 

 

The calcalculation of the element stiffnesss matrix requires three geometric parameters the length of the 

beam L, the cross-section area A, and its second moment I.  The material parameter is the Young 

Modulus E.  The element matrix equation of the beam is given by 

 

1 1

3 2 3 2

1 1

2 2

2 2

3 2 3 2

2 2
2 2

V Q12EI 6EI 12EI 6EI

L L L L

θ M6EI 4EI 6EI 2EI

L L L L
A

12EI 6EI 12EI 6EI V Q

L L L L

6EI 2EI 6EI 4EI θ M

L L L L

    
     

    
         

    
      
    
    
    
        

 (2.25) 
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2.6 Two-dimensional flexural members 

Flexural frames are structures with rigid jointed members that resist loads primarily by flexural action. 

The stiffness relation is first derived in a local coordinate system, defined by the member axes, and is then 

transformed to the global system (Figure 2-5). The stress resultants at any point of such members consist 

of a moment, a transverse shear force, and an axial force. Thus the number of degrees-of-freedom at each 

node is dof=3. The total degrees-of-freedom for the two-noded flexural element shown in Figure 2-5 is 

therefore ndof=6. The size of the element stiffness matrix is 66. 

 

1

2

V2, Q2

V1, Q1

L

2, M2

1, M1

x, u, p

y,
v,
q

U1, P1

U2, P2



X Y

 

Figure 2-5 Two-node beam element  

 

The stiffness equation of a beam element in its local coordinate system is given by Eq. (2.25). This 

equation can be expanded to include the effects of axial forces, P1 and P2: 

 

1

1

3 2 3 2

1

2 2

2

2
3 2 3 2

2
2 2

U PEA EA
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L L
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L L L L

θ6EI 4EI 6EI 2EI
0 0

L L L L
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0 0 0 0

L L

12EI 6EI 12EI 6EI V
0 0

L L L L

6EI 2EI 6EI 4EI θ0 0
L L L L
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  
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  
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       
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Q

M
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Q

M

 
 
 
 
 
 
 
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 (2.26) 

For an arbitrarily oriented beam element, inclined at an angle θ, it is necessary to express the stiffness 

matrix in the global coordinate system. The local and global systems of forces and displacements at each 

node can be related by: 

 

   

   

P cos θ sin θ 0 p

Q sin θ cos θ 0 q

M 0 0 1 M

    
    

     
        

 (2.27) 
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   

   

U cos θ sin θ 0 u

V sin θ cos θ 0 v

θ 0 0 1 θ

    
    

     
        

 (2.28) 

Therefore, local and global nodal forces and displacements are related by: 

 
e e e e    T T

F = T  f   , Δ = T  u  (2.29) 

where  

 

   

   

   

   

cos θ sin θ 0 0 0 0

sin θ cos θ 0 0 0 0

0 0 1 0 0 0
T

0 0 0 cos θ sin θ 0

0 0 0 sin θ cos θ 0

0 0 0 0 0 1

 
 
 
 

  
 

 
 
  

 (2.30) 

The element stiffness matrix in the global coordinate system can be expressed as: 

 T

e e  k = TK T  (2.31) 

or:  
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  
  

 (2.32) 

 

Note that in this case, the force vector at any point comprises stress resultants at the point consisting of a 

moment, a transverse force and an axial force. The displacement vector at any point also comprises a 

curvature, a transverse displacement and an axial displacement. For this reason, these vectors are often 

called the generalised force vector and generalised displacement vector, respectively. 
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CHAPTER 3: BAR AND BEAM FRAMES 

 

  

BAR AND BEAM FRAMES 

 

The behaviour of frames structures consisting of bar and beam elements is considered in this chapter. 

Simple forms of these structures may be analysed using a variety of manual techniques. However, a 

complex structure like the frame structure in Figure 3-1 consisting of many thousands of these elements, 

or a structure combining these elements with continuum elements as shown in Figure 3-2, is best suited to 

analysis by the finite element method.  

 

The stiffness of the complete structure can be constructed using the stiffness of each individual element. 

This matrix represents the relationship between the forces applied to any particular node to the 

displacement of all the nodes in the structure. But since one node may be shared by different elements, the 

assembly of the global stiffness matrix is not straighforward. In this chapter we will deal with this important 

step of the finite element analysis: given the stiffness matrices of all individual elements in a structure. 

How can these matrices be combined to form the stiffness matrix of the complete structure?  

 

     

P

 

Nodes

Element

 

Figure 3-1 Framed structure Figure 3-2 Continuum structure and finite element 

3.1 Assembly of global stiffness matrix 

In this section we will learn how to assemble the global matrices from the corresponding element 

matrices. For a complex structure consisting of beams and columns and braces (Figure 3-1), the global 

stiffness matrix defines the relationship between the load applied at any point to the deformation of any 

other point in the structure. (The distinct points in a structure where the loads are applied or where the 

displacements are required are termed “nodes”). The stiffness matrix of individual element is given by 

 e e e  =   , e=1,...,nf k u  (3.1) 

In the first step of the assembly, the element matrices fe and ke of size n x n are expanded to Fe and Ke of 

size ndof x ndof so that the equation above results in 
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 e e = F K u  (3.2) 

The expanded stiffness matrices have the dimensions ndof x ndof of the global matrix equations.  The 

column vector u contains the degrees of freedom of the whole structure. The column vector Fe and the 

matrix Ke is completed with zeros for all nodes that do not belong to the element. 

 

In the second step of the assembly, the global matrix equation is created by summing all the expanded 

equations, leading to 

 
n

e

e=1

n

e

e=1

   

=     

=  







F Ku

K K

F F

 (3.3) 

3.2 Global matrix equation of a two-bar structure 

First we present the procedure for the assembly of the stiffness matrix of a simple structure consisting of 

two bar elements. Consider the two-bar-structure in Figure 3-3. The structure has 3 nodes, each of which 

may deform and to each of which a force may be applied. Therefore, the force vector or displacement 

vector has 3 components and the stiffness matrix is of order 33. 

 

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

p k k k u

p k k k u

p k k k u

     
     


     
          

 (3.4) 

 

p3, u3
p2, u2p1, u1

-   x  +
1              ka               2             kb            3

 

Figure 3-3 Two-bar-structure 

 

By examining the stiffness matrix of the structure more closely, it may be visualized that the stiffness 

matrix of the complete structure can be formed by the stiffness matrices of the individual elements. The 

stiffness matrices, the load vectors and the displacement vectors of each of the elements can be written as: 

 

a
a a 11

a
a a 22

k k up
Element a:

k k up

     
     

    
 (3.5) 

 

b
b b 22

b
b b 33

k k up
Element b:

k k up

     
     

    
 (3.6) 

Although the two stiffness matrices are of the same order they may not be added directly since they relate 

to different sets of nodes. However, by adding rows and columns of zeros, both of the element stiffness 

matrices may be expanded in such a way that each row and column relates to the three nodes:  
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a
1 a a 1

a
2 a a 2

3

p k k 0 u

Element a: p k k 0 u

0 0 0 0 u

     
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         

 (3.7) 

 

1

b
2 b b 2

b
b b 33

0 0 0 0 u

Element b: p 0 k k u

0 k k up
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      
         

 (3.8) 

The above matrices can now be added together to assemble the stiffness matrix of the complete structure.  

 

a
11 a a 1

a b
2 2 2 a a b b 2

b
3 b b 33

pp k k 0 u

Two-bar structure: p p +p k k k k u

p 0 k k up

       
      
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 (3.9) 

The simple procedure for the assembly of the global stiffness matrix for the two-bar-element structure can be 

extended for more complex structures. 

3.3 Restrained global stiffness matrix of a simple one-dimensional structure 

We will present here a simple example of how to construct the global matrix equation of the Section 1.4 

from the element matrix equations. We start expanding and summing the element matrix equation and 

then we apply the pertinent boundary conditions. 

 

Consider an example similar to the one in Secion 1.4. The structure consists on an elastic material wit h a 

fixed displacement 0u(0)=u   at x=0 and a force P at x=L. The system is subjected to a uniform force per 

unit of volume f. The domain of the problem was divided in four elements as 

 

 

 x1=Δx x0=0 x2=2Δx x3=3Δx x4=L 

u0 u1 u2 u3 u4 e1 e2 e3 e4 P 
 

 

Figure 3-4 One-dimensional structure divided in four elements 

 

The element matrix equations are:  

 
i,i 1i 1

i,i+1i

1f x
+        i=1,2,3

Pu1 1E

Pu1
,4

11Δ 2x

      
    

   




 

 

 (3.10) 

Were 
i,jP is the load acting on the i-element due to the j-element. We expand the matrix in each one of the 

elements 
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      

       
            


 

By summing all of the expanded matrices and using the action-reaction law 
i,j j,iP P we obtain the global 

matrix equation 

 

0 0

1

2

3

4

u1 1 0 0 0 1/ 2 P

u1 2 1 0 0 1 0
E

= fΔxu0 1 2 1 0 1 0
Δx

u0 0 1 2 1 1 0

u0 0 0 1 1 1/ 2 P

       
      

 
      
       
      

        
            

 (3.11) 

The next step is to impose the boundary condition at the first node 0u . First we separate the first row of 

the above equation.  

 0 1 0

E fΔx
(u u ) P

Δx 2
          (3.12) 

 

This equation provides information about the reaction force at the restrained node. The rest of the 

equations can be written as: 

 

0

1 2

2

3

4

u
1 2 1 0 0 1

u
0 1 2 1 0 1fΔx

= u
0 0 1 2 1 1E

u
0 0 0 1 1 1/ 2

u

 
     
     
    
      
         

 (3.13) 

Then we separate the first column from the above equation to obtain 

 

1

2
2

0

3

4

u1 2 1 0 0 1

u0 1 2 1 0 1fΔx
u  = 

u0 0 1 2 1 1E

u0 0 0 1 1 1/2

        
      

 
      
       
      

      

 (3.14) 

The new vector correspond to the restrain of the system at x=0. Thus the global matrix equation results in 
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1 0

2

3

4

u2 1 0 0 1 0 u

u1 2 1 0 1 0 0E E
 = fΔx

u0 1 2 1 1 0 0Δx Δx

u0 0 1 1 1/2 P 0

         
        

 
         
         
        

        

               (3.15) 

In particular, imposing the boundary condition at the first node 
0u =0 we obtain 

 

1

2

3

4

u2 1 0 0 1 0

u1 2 1 0 1 0E
 = fΔx

u0 1 2 1 1 0Δx

u0 0 1 1 1/2 P

       
      

 
      
       
      

      

 (3.16) 

If we take P=0 the results is the same result as derived in Section 1.4 but using a different method: In 

Section 1.4 we obtained the global matrix equation using the global shape function; here we calculate first 

the element matrix equations and then assembled all matrices and apply boundary conditions. Note that 

the essential boundary condition (nodes with zero displacement) was applied by eliminating the row and 

column of the corresponding node. 

3.4 Two-dimensional trusses 

Plane trusses consist of a pin-jointed assembly of bar elements, each of which is in a state of pure tension 

or compression. A simple truss structure is shown in Figure 3-5, which is the subject of the analysis in 

this section. The general procedure explained in the previous section is employed here for the analysis of 

the truss structure. The general procedure for finite element analyses depends very little on the type of the 

structure and whether the structure is a truss, a frame, or a discretised continuum.  

1. Coordinate system 

A cartesian coordinate system is best suited to any type of truss.  

 

2. Discretisation 

The truss structure consists of 10 members. Each of the members is chosen as a pin-jointed finite 

element. No further discretisation is required for a simple truss structure. The finite elements are 

numbered from 1 to 10 (in circles) as shown in Figure 3-5. A linear bar element has two nodes, and 

each node has 2 degrees-of-freedom. 
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Figure 3-5 Truss structure 
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3. Node numbering system 

The choice of the node numbering system for a structure affects the distribution of the non-zero 

stiffness components in the global stiffness matrix. It also affects the storage size of the stiffness 

matrix in many finite element programs. In general, a good node numbering system shall minimise the 

difference between the end node numbers of any member that is a part of the structure. Such a 

numbering system for the nodes is shown in Figure 3-5. 

 

4. Element stiffness matrix 

The stiffness matrix of bar elements has been derived in the Section 2.4 as: 

 

2 2

2 2

e 2 2

2 2

c cs c cs

cs s cs sAE

L c cs c cs

cs s cs s

  
 

  
  
 
  

k  (3.17) 

Where A, E, and L are the cross-section area, the Young’s modulus, and the length of the bar 

element, respectively, and c=cos θ, s=sin θ, where θ is the inclination angle of the element axis with 

respect to the global x-axis, measured in the anti-clock wise direction. The stiffness matrices of all 

elements are calculated from Eq. (3.17)  and shown in Table 3-1. The displacement vectors for 

different elements are also shown in the same table. 

 

Table 3-1 Stiffness matrices and displacement vectors of the bar elements 

Element No. Displacement vectors Stiffness matrices 

1, 2, 3, 10 

 

L=H 

θ=0 o 

 

 e

1 1 1 2 2u   = u , v , u , v  

 e

2 2 2 4 4u   = u , v , u , v  

e

3u  = 4 4 6 6u , v , u , v  

e

10u = 3 3 5 5u , v , u , v  

e

1, 2, 3,10

1 0 1 0

0 0 0 0A.E
k

1 0 1 0H

0 0 0 0

 
 
 
 
 
 

 

4, 6 

 

L= 2 H  

θ =45 o 

 

e

4u  = 1 1 3 3u , v , u , v  

e

6u  = 2 2 5 5u , v , u , v  

 

e

4, 6

1 1 1 1

1 1 1 1A.E
k

1 1 1 12 2 H

1 1 1 1

  
 

 
 
  
 
  

 

5, 8  

 

L=H,  

θ =90o 

e

5u  = 2 2 3 3u , v , u , v  

e

8u  = 4 4 5 5u , v , u , v  

 

e

5, 8

0 0 0 0

0 1 0 1A.E
k

0 0 0 0H

0 1 0 1

 
 


 
 
 

 

 

7, 9  
 

L= 2 H  

θ =135 o 

 

e

7u  = 4 4 3 3u , v , u , v  

e

9u  = 6 6 5 5u , v , u , v  

 

e

7, 9

1 1 1 1

1 1 1 1A.E
k

1 1 1 12 2 H

1 1 1 1

  
 
 
 
  
 

  
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5. Global stiffness matrix 

The element stiffness matrices can be enlarged to full structure size and added together to assemble 

the global stiffness matrix for the complete structure. An example of this type of assembly has been 

given in Chapter 1. Since each node has two degrees-of-freedom, the unrestrained global stiffness 

matrix for the 6-noded structure is of the order 1212: 

 

  

1 1 1 1
1 1 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2

1 1 1 1
0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2

1 1 1 1
1 0 2 0 0 1 0 0 0

2 2 2 2 2 2 2 2

1 1 1 1
0 0 1 0 1 0 0 0 0

2 2 2 2 2 2 2 2

1 1 1 1 1
0 0 1 0 1 0 0 0

2 2 2 2 2 2 2 2 2

1 1 1 1 1
0 1 0 1 0 0 0 0

EA 2 2 2 2 2 2 2 2 2
K

1 1 1 1H
0 0 1 0 2 0 0 1 0

2 2 2 2 2 2 2 2

1 1 1
0 0 0 0 1

2 2 2 2 2 2

   

 

    

   

    

    



    

  
1

0 1 0 0
2 2

1 1 1 1 1
0 0 1 0 0 0 1 0

2 2 2 2 2 2 2 2 2

1 1 1 1 1
0 0 0 0 0 1 0 1

2 2 2 2 2 2 2 2 2

1 1 1 1
0 0 0 0 0 0 1 0 1

2 2 2 2 2 2 2 2

1 1 1 1
0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
 
     
 
 
    
 
 
  
  

 

(3.18) 

 

6. Boundary conditions 

The boundary conditions shall be applied by eliminating rows and columns of the global stiffness 

matrix associated with the fixed degrees-of-freedom. Four of the degrees-of-freedom are restrained, 

i.e., u1, v1, u6, v6. Therefore, columns 1, 2, 11, 12 and rows 1, 2, 11,12 of the global stiffness matrix 

are eliminated and the size of the restrained stiffness matrix reduces to 88:  
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R

1 1 1 1
2 0 0 1 0

2 2 2 2 2 2 2 2

1 1 1 1
1 0 1 0 0

2 2 2 2 2 2 2 2

1 1 1
0 0 1 0 1 0

2 2 2 2 2

1 1 1
0 1 0 1 0 0

EA 2 2 2 2 2
K

1 1 1 1H
1 0 2 0 0

2 2 2 2 2 2 2 2

1 1 1 1
0 0 1 0 1

2 2 2 2 2 2 2 2

1 1 1
1 0 0 0 1 0

2 2 2 2 2

1 1 1
0 0 0 1 0 1

2 2 2 2 2

 
    

 
 

    
 
 

  
 
 
   
 

  
    
 
 
    


    


    
 








  

(3.19) 

The restrained degrees-of-freedom shall also be eliminated from the global displacement vector and 

the global force vector: 

  
T

R 2 2 3 3 4 4 5 5Δ  u  , v  , u  , v  , u  , v  , u  , v    (3.20) 

  
T

R 2 2 3 3 4 4 5 5F  p  , q  , p  , q  , p  , q  , p  , q    (3.21) 

 

7. Solution of the finite element equations 

The finite element equations can now be solved for the unknown nodal displacements: 

 -1

R R RK F = Δ  (3.22) 

where: 

 

1

R

0.6547 0.1845 0.1488 0.1488 0.3453 0.1488 0.1845 0.1845

0.1845 2.7294 0.0641 1.9497 0.1488 1.5454 0.4895 1.4323

0.1488 0.0641 1.1200 0.1772 0.1845 0.4895 0.6736 0.2692

0.1488 1.9497 0.1772 2.0628 0.1845 1.4323H
K

EA



 

  

   

  


0.2692 1.2120

0.3453 0.1488 0.1845 0.1845 0.6547 0.1845 0.1488 0.1488

0.1488 1.5454 0.4895 1.4323 0.1845 2.7294 0.0641 1.9497

0.1845 0.4895 0.6736 0.2692 0.1488 0.0641 1.1200 0.1772

0.1845 1.4323 0.2692 1.2120 0.1488 1.9497 0.17

 



 72 2.0628

 
 
 
 
 
 
 
 
 
 
 
  

 (3.23) 

 

Assuming that a vertical load of 1000 kN is applied at node 3, as shown in Figure 3-5, and E=2108 kPa, 

A=0.01 m2, H=4 m, a solution to Eq.  (3.22) results in: 
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 

 

T

R 2 2 3 3 4 4 5 5

T

Δ      u     ,    v     ,     u    ,      v      ,     u     ,     v      ,      u     ,      v       

 .0003, .0039,  .00035, .00413, .00037, .00286, .00054, .00242 



     
 (3.24) 

 The displacements associated with the restrained degrees-of-freedom, u1, v1, u6 and v6 are all zero. The 

reactions at node 1 and 6, i.e., p1, q1, p6, q6, can be calculated by multiplying the first, second, eleventh 

and twelfth rows of the unrestrained stiffness matrix by the displacement vector, Δ : 

    
T

1 1 6 6 p  , q  , p  , q     517.88, 666.67, 517.88, 333.33    (3.25) 

 

8. Calculation of stresses and strains for each element 

The axial strain, ε, and axial stress, σ, in any element can be calculated from the element nodal 

displacements. The nodal displacements should be transformed into the local coordinate system of the 

element under consideration. The relationship between the element nodal displacements in the local 

coordinate system, eΔ , and the element nodal displacements in the global coordinate systems, u e, 

was given in Eq. (3.1): 

 T

e e  Δ T u  (3.26) 

where T is the transformation matrix, defined by: 

    

   

   

   

cos θ sin θ 0 0

sin θ cos θ 0 0
T

0 0 cos θ sin θ

0 0 sin θ cos θ

 
 
 
 
 
  

 (3.27) 

 

Here θ is the inclination angle of the element. The axial strain and stress for element 6, for example, are 

calculated as follow. The element nodal displacement vector in the global system, u e, is: 

    
T T6 

2 2 5 5 u   u  , v  , u  , v     0.00030 , 0.00390, 0.00054 , 0.00242       (3.28) 

 Therefore the element nodal displacements in the local coordinate system is: 

  
T6 T

e 1 1 2 2Δ   T   u   U  , V  , U  , V   (3.29) 

 6

cos(45) sin(45) 0 0 0.00030 0.00255

sin(45) cos(45) 0 0 .00390 0.00297
Δ

0 0 cos(45) sin(45) .00054 0.00209

0 0 sin(45) cos(45) .00242 0.00133

     
     
  
      
      
     

       

 (3.30) 

The axial strain and stress can be calculated for the element as: 

 2 1U U 0.00209 0.00255
ε 0.00008

L 4 2

  
    (3.31) 

 σ E ε  15986 kPa   (3.32) 
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3.5 Two-dimensional flexural frames 

The Figure 3-6 shows a plane frame consists of 5 elements that are rigidly connected together. The 

supports are also fully fixed. The properties of the elements are: 

 

Elements 1, 2, 3: A=0.0025m2, I=0.00005m4, E=2108 kPa  

Elements 4, 5:  A=0.0010m2, I=0.00025m4, E=2108 kPa  

 

If a horizontal load of p2=1000kN is applied at node 2, we want to calculate the rotations of node 2. 
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Figure 3-6 Frame structure 

The general procedure for finite element analyses, explained in the previous section, is employed here for 

the analysis of the frame. 

 

The coordinate system, discretisation (element numbering) and node numbering system used for the 

analysis of the frame is shown in Figure 3-6. 

 

1.  Element stiffness matrix 

The stiffness matrices of all elements are calculated using Eq. (2.32) and shown in Figure 2-5, 

together with the element displacement vectors. 

 

2. Global stiffness matrix 

The global stiffness matrix is assembled using the direct method explained in the previous section. 

The restrained global stiffness matrix for the complete structure is given as: 

R

40960 0 2400 40000 0 0 0 0 0

0 104800 12000 0 4800 12000 0 0 0

  2400 12000 48000 0 12000 20000 0 0 0

40000 0 0 80960 0 2400 40000 0 0

K 0 4800 12000 0 109600 0 0 4800 12000

0 12000 20000 2400 0 88000 0 12000 20000

0 0 0 40000 0 0 40960 0 2400

0 0 0 0 480







 

   





 0 12000 0 104800 12000

0 0 0 0 12000 20000 2400 12000 48000

 
 
 
 
 
 
 
 
 
 
 

  
  

 (3.33) 
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Table 3-2 Stiffness matrices and displacement vectors of the flexural elements 

Element 

No. 
Displacement vectors Stiffness matrices 

1, 2, 3 

e

1u = 1 1 1 2 2 2u ,v , θ , u , v , θ  

e

2u = 3 3 3 4 4 4u , v , θ , u , v , θ  

e

3u = 5 5 5 6 6 6u , v , θ , u , v , θ  

e

1, 2, 3

960 0 2400 960 0 2400

0 100000 0 0 100000 0

2400 0 8000 2400 0 4000
k

960 0 2400 960 0 2400

0 100000 0 0 100000 0

2400 0 4000 2400 0 8000

   
 


 
 

  
 

 
 
 

 

4, 5 

e

4u  = 2 2 2 4 4 4u , v , θ , u , v , θ  

5ue  = 4 4 4 6 6 6u , v , θ , u , v , θ  

e

4, 5

40000 0 0 40000 0 0

0 4800 12000 0 4800 12000

0 12000 40000 0 12000 20000
k

40000 0 0 40000 0 0

0 4800 12000 0 4800 12000

0 12000 20000 0 12000 40000

 
 


 
 

  
 
   
 

 

 

 

3. Boundary conditions 

The boundary conditions have been applied to stiffness matrix by the direct assembly method. The 

vectors of the restrained global degree-of-freedom and the global force vector for the structure are: 

    
T T

R 2 2 2 4 4 4 6 6 6 1 2 3 4 5 6 7 8 9Δ u , v , θ , u , v , θ , u , v , θ a , a , a , a , a , a , a , a , a   (3.34) 

    
T T

R 2 2 2 4 4 4 6 6 6F p , q , M , p , q , M , p , q , M 1000, 0, 0, 0, 0, 0, 0, 0, 0   (3.35) 

 

4. Solution of the finite element equation 

The finite element equations can now be solved which result in the unknown nodal displacements: 

  
T

RΔ 0.394 , 0.002 , 0.019 , 0.377 , 0.000 , 0.002 , 0.370 , 0.002 , 0.018      (3.36) 

Therefore the rotation of node2 is θ2=  0.019 radians; the negative sign indicates a clockwise 

rotation. 

3.6 Suitable node numbering system 

A suitable node numbering system is needed to minimise of non-zero elements in the stiffness matrix. 

This will help in optimizing computer storage and will reduce the number of calculations required to 

invert the stiffness matrix. This section provides simple instructions for a suitable node numbering 

system. 

 

If the nodes are suitably numbered so that the maximum difference between nodal numbers in any one 

member is kept small, the stiffness matrix consists of a narrow band of non-zero numbers clustered about 

the main diagonal. Figure 3-7(a) shows diagrammatically such a banded stiffness matrix. In this figure 

Ndof is the order of the full square stiffness matrix and B is the “bandwidth”, defined as: 

  of i j maxB d 1 ( Node Node )     (3.37) 
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where dof is the number of degrees-of-freedom at each node and 
i j max( Node - Node )  is the difference 

between end node numbers in the member that has the maximum difference in end node numbers. 

 

The stiffness matrices are also symmetric. Therefore, for the purpose of efficient storage, the compact 

storage of Figure 3-7(b) should be adopted, in which only the upper half of the band of the whole stiffness 

matrix is stored. The diagonal of the whole stiffness matrix becomes the first column of the compact 

matrix. In large problems B may be only a few percent of Ndof. Thus very large savings in storage can be 

made by the compact storage of global stiffness matrix.  

 

A large portion of the computational time in a finite element analysis is spent on solving the stiffness 

equations, i.e., finding the inverse of the stiffness matrix. The computational time required for solving the 

stiffness equations is approximately proportional to the square of the bandwidth of the stiffness matrix. 

Therefore, a suitable node numbering system allows considerable reductions in computational time by 

reducing the bandwidth. 

 

To demonstrate the effectiveness of a suitable node numbering system in reducing the bandwidth of a 

structure, consider a five-story frame structure consisting of 10 nodes, each with three degrees-of-

freedom. The restrained structure has 30 degrees-of-freedom, thus Ndof=30. Three different 

node-numbering systems are shown in Figure 3-8, together with the stiffness matrices resulting from each 

of the systems.  
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Figure 3-7 The banded system and compact storage of the stiffness matrix  

 

Each (x) in the stiffness matrices represents a 33 matrix containing the stiffness coefficients associated 

with a node. For system (a) the bandwidth B is equal to 9, and for systems (b) and (c), B=18 and B=30, 

respectively. Obviously for this structure the most suitable node numbering system is the one presented in 

Figure 3-8(a). The worst node numbering system is case (c) in Figure 3-8. 
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Figure 3-8 Different node numbering systems (After Dawe, D. J., 1984, Matrix and Finite Element 

Displacement Analysis of Structures) 
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Problems 

 

Problem 3.1. Trusses1 

Derive the global matrix equation of the structure in the figure. All members of the structure have a cross 

section area A = 0.001m2 and a Young modulus E=2108 kPa. 

 

 
100kN 

10m 

45
o
 

1 2 

3 4 

 
 

Problem 3.2. Trusses2 

Derive the global stiffness matrix of the structure in the Figure above. All members of the structure have a 

cross section area A = 0.01m2 and a Young modulus E=2108 kPa. 

 

 
400kN 

10m 

30
o
 

 
 

Problem 3.3. Trusses3 

This problem is about the construction of the stiffness matrix for a simple pin-jointed structure that 

consists of two bar elements as shown in the figure below. Both elements have the same cross-section 

area, A, and Young's modulus, E. The length of the bar “b” is L. 

 

 Q 



 
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. 
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1)  Find the element matrix equation 
e e e = f k u for each bar. 

2)  Find the expanded element matrix equation 
e e e = F K U for each bar 

3)  Find the unrestrained global matrix equation 
2 2

e e

e 1 e 1

  ,    = ,    =
 

  F KU K K F F  

4)  Find the global matrix equation after applying the boundary conditions. 

5)  Find the displacement of the unrestrained nodes 

 

Problem 3.4. Trusses 4 

1)  Calculate the nodal displacements and reactions for the pin-jointed structure shown below. 

(All members of the structure have a cross section area A = 0.001m2 and a Young’s modulus 

E=2108 kPa.) 

2)  Evaluate the results, are they reasonable? 

3)  If the cross section area of the vertical member is increased by 1000 times, how does this change 

affect the results? 

 

100kN

10m

30
o

 
 

Problem 3.5. Solver and pre- and post-processing  

This question is about finding the structure of the finite element analysis using the steps listed below. 

Most of these steps belong to the three main components of the analysis: pre-processing, processing, and 

post-processing. Few of the steps are not necessary. Find the steps for each component and sort them in 

the order they should be executed during the analysis. 

 

a) calculate displacement at the 

domain 

b) assembly unrestrained global 

matrix equation 

c) input boundary conditions 

d) calculate stress at the domain 

e) input material properties 

f) invert global stiffness 

matrix 

g) apply boundary 

conditions 

h) calculate nodal loads 

i) create element matrix 

equations 

j) invert element stiffness 

matrices 

 

k) input nodes 

l) invert unrestrained global matrix 

equation 

m) calculate stress at the nodes 

n) input elements 

o) calculate nodal displacement 

 

Write your solution in the table below. (Note: Not all boxes have to be filled.) 
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Component include the letters a–o of the steps, in the order they should be executed 

Pre-processor          

Solver          

Post-processor          

 

Problem 3.6. Two bar elements 

This problem is about the construction of the stiffness matrix for a simple structure that consists of two 

bar elements as shown in the figure below. Both elements have the same cross-section area A=0.01m2 and 

the same length L=1m. A load P=10N is applied at the right node. Write your solutions in the boxes 

below. 

 

. 
 

Eb=100MPa 

zz 

P Ea=50MPa 

-   x  + 

u1 u2 u3 

 

 

1)  Write down the element matrix equation e e e = f k u for each bar. 

2)  Find the expanded element matrix equation e e = F K u for each bar 

3)  Find the unrestrained global matrix equation 
2 2

e e

e 1 e 1

  ,       = ,          =
 

  F Ku K K F F  

4)  Find the global matrix equation after applying the boundary conditions. 

5)  Find the displacement of the unrestrained nodes. 
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CHAPTER 4: STRAIN AND STRESS IN CONTINUA 
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STRAIN AND STRESS IN CONTINUA 

 

The general equations for derivation of the finite element relationships have been established in the 

previous chapters through consideration of simple one-dimensional elements such as bars and beams. The 

extension of the general equations to two or three-dimensional elements differs from the unidirectional 

case only in the degree of complexity involved and not in the basic concepts. The remainder of the 

textbook will be focussed with two-dimensional elements, but before such elements can be studied in 

detail, a review of the relevant concepts and the governing relations of continuum mechanics will be 

presented.  

 

To carry out a stress analysis of a structure using the finite element method, it is first necessary to 

understand the matrix formulation of stress and strain.  If you intend to use the method you should also 

need a good comprehension of constitutive modelling.  The reason for this is obvious.  Human lives will 

depend on how well you model the structure and interprets the results.  Ultimately, it is a stress analysis 

problem you will be investigating when analysing a bridge or a foundation – not a computer analysis 

problem as often depicted in glossy FEM commercial package sales brochures.  No matter how 

sophisticated the computer method may be, experience and knowledgeable engineering judgement should 

always be the absolute criterion for a correct engineering design decision.  

 

In this chapter, the strains and stresses in continua are presented followed by the stress-strain relationships. 

Consideration on constitutive modelling is focused to linear isotropic elasticity. A brief review on the theory 

of elasto-plasticity is provided in the last section.  

4.1 Kinematic equation: Definition of strain 

In this section the concept of normal strain and shear strain in a solid continuum will be reviewed. 

Expressions for transformation of strains from one coordinate system to another are also provided. When 

a body is subjected to applied loads it will distort. A small element which is subject to in-plane loading may 

deform in the manner shown schematically in Figure 4-1. 
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y x xxx 
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the y-direction 

Shear strain in 
the x-y plane 

 

Figure 4-1 Normal and shear strain in x-y plane 
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In general a small planar distortion can be broken up into: 

 

(a) a rigid body translation in the x direction 

(b) a rigid body translation in the y direction 

(c) a rigid body rotation about the z axis 

(d) a normal strain xx in the x direction 

(e) a normal strain yy in the y direction 

(f) a shear strain xy in the xy plane. 

 

The rigid body components (a, b, c) involve no change in shape and hence no strain. The axial extensions 

(d,e) involve a change in area while the shear strain (f) involves no change in area. 

 

Relation of strains to displacements 

An examination of the displacements for the element shown in Figure 4-1 shows that for small 

deformations and changes of shape, the strains can be expressed in terms of the displacement components 

as follows: 

 

x
xx

y

yy

yx
xy

u
ε

x

u
ε

y

uu
γ

y x










 
 

 (4.1) 

These equations can be written in matrix form 

 

xx

x

yy

y

xy

0
xε

u
ε 0

uy
γ

y x

 
 
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   
         

    
 
  

 (4.2) 

It is clear that by examining the deformation of elements in the yz and zx planes it is possible to identify 

similarly the strains in these planes: 
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y z
yz

x z
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u u
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u u
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
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 

 

 
 
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 (4.3) 

The full three-dimensional kinematic relation can be written in a compact for as 

  ( )ε L u x  (4.4) 
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where: 

 
T

yy xy yzε , ε , ε , γ , γ , γxx zz xz
   ε  (4.5) 

 
T

x y zu , u , u   u  (4.6) 
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L  (4.7) 

Eq.  (4.4) can be used to evaluate expressions for the strain components if the displacements are known. 

These expressions may be exact as in an analytic solution or approximate as in the case when the 

displacements are expressed in terms of interpolation functions. Eq. (4.4) gives zero strain whenever the 

displacements considered correspond to a rigid body movement. 

 

The volumetric strain v for an element is defined to be the increase in volume divided by the initial 

volume of the element. For small strains it is related to the normal strains by the following relationship. 

 
v xx yy zzε ε ε ε    (4.8) 

4.2 Transformation of strain 

It is sometimes convenient to determine the strains in terms of a local coordinate system. It is therefore 

necessary to find a method for transformation of strains from one coordinate system to another. The 

transformation of strains is facilitated by introducing the mathematical component of shear strain εxy. In 

contrast to the engineering shear strain, xy, this is defined by the relation: 

 

xy

xy yx

yz

yz zy

zx
zx xz

γ
ε ε
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γ
ε ε

2

γ
ε ε
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 

 

 

 (4.9) 

The strain tensor  is then defined as 
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xx xy xz

yx yy yz

zx zy zz

ε ε ε

ε ε ε ε

ε ε ε

 
 

  
 
 

 (4.10) 

where the components of the strain tensor can be calculated from the displacements using the 

relationship: 

 p q

pq

u u1
 =  + ε

2 q p

  
 
  

 (4.11) 

And p, q can be any of the symbols x, y, z. 

In the transformed coordinate system the strain tensor has the form 

 

XX XY XZ

YX YY YZ

ZX ZY ZZ

ε ε ε

Ε ε ε ε

ε ε ε

 
 


 
  

 (4.12) 

where QP
PQ

UU1
 =  + Ε

2 Q P

 
 
  

and P, Q can be any of the symbols X, Y, Z. 

The local and global coordinate systems are related by the relation given in Eq.(B.5), Appendix B: 

 r = HR  (4.13) 

where: 
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r y
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And Ii, mi, ni are the cosine of the anti-clockwise angles between the different axes of the two coordinate 

systems, as defined by Eq.(B.6) in Appendix B. 

 

The strain tensors in the different coordinate systems can be related by the relations: 

 T
ε = H E H  (4.14) 

 T   E = H ε H  (4.15) 

 

Strains in a cylindrical polar coordinate 

The strain components in cylindrical polar coordinates can be found by determining the strains relative to 

a set of reference axes X, Y, Z with the X axis parallel to the r direction, the Y axis parallel to the  

direction and the Z axis parallel to the z axis as shown in Figure B.4, Appendix B. Thus: 
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zr zθ zz zx zy zz

ε ε ε   c s 0 ε ε ε c s 0
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ε ε ε 0 0 1 ε ε ε 0 0 1
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        
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 (4.16) 

where c=cosθ and s=sinθ.  
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The expressions for strains in terms of displacement components in polar coordinates are more complex 

than in Cartesian coordinates. It is found: 
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 (4.17)  

4.3 Balance equation: Definition of stress 

The previous section has been concerned with deformation of a continuous body. In this section the forces 

within the body that cause this deformation will be examined, stress components under three-dimensional 

conditions will be defined, and the concept of a stress tensor (matrix) will be introduced together with 

transformation of stresses in different coordinate systems. 

 

 

Figure 4-2 Infinitesimal cube used to define the stress 

 

Consider a small rectangular box, having sides of length x, y, z parallel to the x, y, z axes 

respectively see Figure 4-2. The material outside the boxes will exert a force on each of the six sides of 

the box. As the dimensions of the box approach zero, the forces on the sides of the box also approach 

zero. However the force per unit area approaches a limiting value that is called the traction. Consider the 

positive x face (the face having the x axis as its outward normal) and assume the x, y, z components of the 

force acting on this face are denoted Fxx, Fxy, Fxz respectively.  

 

The stress components (xx, xy, xz) at point P inside the face are defined by the relationships: 

y 
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xyxx xz

xx xy xz

x x x

ΔFΔF ΔF
σ . σ . σ .

ΔA ΔA ΔA
    (4.18) 

where Ax = y.z is the area of the x face.  

 

It is similarly possible, by considering the force acting on the y, z faces, to define the stress components 

(yx, yy, yz) acting on the y face and those acting on the z face (zx, zy, zz). In general 

 
pq

pq

p

ΔF
σ .

ΔA
  (4.19) 

where ΔFpq is the force acting on the p-face along the q-direction and ΔAp is the area of the p-face.  

 

The collection of stress components pq (where the indices p, q can take any of the values x, y, z) is called 

the stress tensor at point P, and is defined below:   
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σ σ σ
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 (4.20) 

 

The stress components xx, yy, zz are called normal or direct stresses. The components xy, yz, zx,, yx, 

zy, xz are called shear stresses. In structural mechanics a tensile normal stress are assumed to have a 

positive value. In soil mechanics compressive stresses are assumed to be positive. 

 

Traction acting on a plane 

The stress tensor defined in the previous section can be used to calculate the force per unit area acting on 

any plane passing through P. Suppose that a plane passing through point P has an outward unit normal n 

as shown in Figure 4-3. 
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z 

Traction τ   

Normal n 

Ty 

Tz 

Tx 

 

Figure 4-3 Traction acting on a plane 

 

By considering the equilibrium of the tetrahedron shown in Figure 4-3 it can be shown that the traction τ  

(force per unit area) acting on the plane is given by: 

 τ = σ n  (4.21) 
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x xx x xy y xz z

y yx x yy y yz z

z zx x zy y zz z

τ   σ  n  σ  n   σ  n

τ   σ  n  σ  n   σ  n

τ   σ  n  σ  n   σ  n

  

  

  

 

A simple demonstration of this is found by considering the x-y plane system of stresses in which there are 

no shear stresses acting on the z face, so that xz=0 and yz = 0. The situation is shown schematically in 

Figure 4-4. 
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yx 

yy 
xy O 
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 

 

Figure 4-4 Relation of stress and traction 

Equilibrium of the forces in x and y directions reveal that: 

 x xx xyτ AB   σ OB  σ OA 
 

 y yx yyτ AB  σ OB σ OA   
 

 
OA  cosα AB

 

 
OB  sinα AB

 
 

The normal to AB is given by: 

 

T T

x y[n n ] [sinα cosα] n
 

 

So that: 

 x xx x xy yτ   σ  n   σ  n 
 

 y yx x yy yτ   σ  n   σ  n 
 

 

Static equations for the stress 

Under most cases the stress distribution will vary from point to point. In most civil engineering analyses it 

can be assumed that processes are quasi static, i.e., the effects of acceleration can be neglected. In this 

case consider the equilibrium of rectangular box shown in Figure 4-5. 
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Figure 4-5 Left: equilibrium in a rectangular box whose center is the point (x,y,z). Right: stress components 

seen from the top. 

 

The force in the z direction acting on the face A*B*C*0* is:  zzσ x,y,z+Δz/2 ΔxΔy  

The force in the z direction acting on the face A B C O is:  zzσ x,y,z Δz/2 ΔxΔy   

The force in the z direction acting on the face A B B*A* is:  xzσ x+Δx/2,y,z ΔyΔz  

The force in the z direction acting on the face O C C*O* is:  xzσ  x x/2,y,z ΔyΔz   

The force in the z direction acting on the face B C C*B* is:  yzσ x,y+Δy/2,z ΔzΔx  

The force in the z direction acting on the face A O O*A* is:  yzσ x,y y/2,z ΔzΔx   

The force in the z direction due to the self-weight of the material is: Zw ΔxΔyΔz  

In the above relations, the quantities in brackets “()” indicate the coordinates of the point at which the 

stress is taken. 

 

The sum of these 7 force components must vanish. By dividing the resulting equation by the volume of 

the box and letting x,y,z0 it is found that: 

yz yzxz xz zz zz

z

σ (x,y+Δy/2,z) σ (x,y Δy/2,z)σ (x+Δx/2,y,z) σ (x Δx/2,y,z) σ (x,y,z+Δz/2) σ (x,y,z Δz/2)
+ +w  = 0

x y z

    


  
 (4.22) 

Now we use the concept of the partial derivative to obtain 

 
yzxz zz

z

σσ σ
w 0

x y z

 
   

  
 (4.23) 

The complete set of equilibrium equations can be derived in similar fashion and it is found that: 

 

yxxx xz
x

xy yy yz

y

zyxz zz
z

σσ σ
w 0

x y z

σ σ σ
w 0

x y z

σσ σ
w 0

x y z

 
   

  

  
   

  

 
   

  

 (4.24) 
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where wx, wy, wz are the components of the unit weight of the material in the x, y z directions 

respectively. It can be written in a compact form 

 T + =L σ w 0  (4.25) 

where L is the differential operator defined above, and  

 

T

yy xy yz

T

x y z

σ , σ , σ , σ , σ , σ

w , w , w

xx zz xz
   

   

σ

w

 

The equation above is also called the strong form of the equilibrium equation. For the finite element 

analyis, it better to formulate equilibrium using the weak form that will be presented in Chapter 6. 

 

Stress components in different coordinate systems 

The stress components defined by Eq. (4.20) were based on the x, y, z coordinate system. The coordinate 

system X, Y, Z could also have been used to define the stress tensor  and in that case it would have been 

found that: 

 

XX XY XZ

YX YY YZ

ZX ZY ZZ

σ σ σ

Σ σ σ σ

σ σ σ

 
 


 
  

 (4.26) 

If Eq. (4.13) is applied to the three planes having the X, Y, Z directions as outward normal respectively, 

the stress tensors are related by the following equations: 

 
T=

T

σ HΣH

Σ = H σH
 (4.27) 

where H is the transformation matrix which relates two coordinate systems and defined by Eq.(B.6). 

 

Example 4.1 

In example 4.1 the stress state was given relative to the x, y, z coordinate system.  However, when 

examining the stress state in the silt seam it is more appropriate to use a local (X, Y, Z) axes in which the 

Y axis is normal to the seam and the X, Z axes are in the plane of the seam. Thus 

 

0.9397 0.3420 0 250 0 0 0.9397 0.3420 0

0.3420 0.9397 0 0 300 0 0.3420 0.9397 0

0 0 1 0 0 250 0 0 1

XX XY XZ

YX YY YZ

ZX ZY ZZ

  

  

  

           
       

      
       
              

Σ

 

255.85 16.07 0

16.07 294.15 0 kPa

0 0 250

 
 

 
 
  

Σ  

 

Symmetry of the stress tensor 

The convention adopted in defining the stress components is that pq defines the "p" component of 

traction (force per unit area) acting on the plane having the "q" axis as the outward normal. By 

considering the moment equilibrium of the rectangular box shown in Figure 4-5, it can be shown that: 
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 pq qpσ   σ  (4.28) 

 

Stress components in cylindrical polar coordinates 

The stress components for a set of cylindrical polar coordinates correspond to those for a set of Cartesian 

axes having an X axis parallel to the r direction, a Y axis parallel to the  direction and a Z axis parallel to 

the z direction. 

 

rr rθ rz xx xy xz

θr θθ θz yx yy yz

zr zθ zz zx zy zz

σ σ σ   c s 0 σ σ σ c s 0

σ σ σ s c 0 σ σ σ s c 0

σ σ σ 0 0 1 σ σ σ 0 0 1

       
      

        
            

 (4.29) 

where c = cos and s = sin. 

 

The conditions of equilibrium expressed in terms of polar coordinates are: 

 

rθ rr θθrr zr
r

rθ θθ θz rθ
θ

θzzr zz zr
z

σ σ σσ σ1
w 0

r r θ z r

σ σ σ 2σ1
w 0

r r θ z r

σσ σ σ1
w 0

r r θ z r

  
    

  

  
    

  

 
    

  

  (4.30) 

where wr, w, wz denote the components of body force acting in the r, , z directions respectively so that: 

 

r x y

θ x y

z z

cosθ + sinθw  w w

sinθ cosθw w w

w w

   
   

    
      

 (4.31) 

4.4 Stress-strain relations 

The concepts and relationships developed in the previous sections are applicable to any material. 

Different materials respond to application of forces in different ways and are said to have different 

constitutive behaviours. In this section the linear relationship between strains and stresses under three-

dimensional conditions will be introduced. We assume that the material is isotropic and it behaves 

elastically. The relationships for the special cases of plane strain, plane stress, and axi-symmetric 

conditions will be derived from the general relationship. 

 

Consider a simple element in a structure. In general the element will not be in a state of zero stress. It will 

almost certainly be subjected to atmospheric pressure; however, it may also be subjected to additional 

stresses. For example an element of concrete in a gravity dam, shown in Figure 4-6, will be subjected to 

stresses due to the self-weight of the material, or an element in a steel section may be stressed because of 

the rolling process or heat treatment used in its production. 
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(a) Initial State (b) Final State 

o o+ 

 

Figure 4-6 Dam subjected to water loading 

 

If the element is subjected to an increase in stress it will respond by undergoing an increase in strain. 

Many materials, to sufficient accuracy, respond in the following simple manner: 

i) The increment of strain is directly proportional to the increase in stress, i.e., if the increment in stress is 

doubled/halved the increment of strain is doubled/halved. 

ii) The increment of strain due to the combined action of two sets of stress, e.g., a normal stress together 

with a shear stress, is the sum of the strains due to each of the sets of stress applied individually. 

Such materials are said to be linear elastic. 

 

Isotropic elasticity 

An isotropic body is one in which the behaviour on an element within the body does not depend on the 

orientation of the element. Suppose an element of an isotropic elastic material shown in Figure 4-6 is 

subjected to increases in both normal stress and shear stress. From the previous discussion it can be seen 

that the response to this loading can be found by summing the responses of the six components of the 

loading as shown in Figure 4-7. 
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Figure 4-7 Stress components 

 

Consider component (a) in, it is clear from symmetry that the components of shear strain yz, zx, xy are 

all zero and also that yy = zz. Hooke’s law for uniaxial behaviour states that: 
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xx
xx

xx
yy

xx
zz

σ
ε

E

σ
ε ν

E

σ
ε ν

E



 

 

 (4.32) 

where E and  are material constants called Young's modulus and Poisson's ratio, respectively. A 

consideration of the component (b) leads to the conclusion that the only non-zero strain components are: 

 

yy

xx

yy

yy

yy

zz

σ
ε ν

E

σ
ε

E

σ
ε ν

E

 



 

 (4.33) 

Similarly it is found that the response to the component (c) leads to the non-zero strains: 

 

zz
xx

zz
yy

zz
zz

σ
ε ν

E

σ
ε ν

E

σ
ε

E

 

 



  (4.34) 

The response to the combined normal stresses is thus: 

 

xx yy zz

xx

yy xx zz

yy

zz xx yy

zz

σ ν(σ σ )
ε

E

σ ν(σ σ )
ε

E

σ ν(σ σ )
ε

E

 


 


 


 (4.35) 

The shear strain increment, γxy occurs due to an increment of shear stress xy, as shown in Figure 4-7(d), 

can be calculated by the following relation: 

 

                                                            
xy

xy

σ
γ

G
  (4.36)(a) 

 

where G is a material property called the shear modulus. Similarly, the responses to the stress changes (e) 

and (f) are: 

                                                                       
yz

yz

σ
γ

G
  (4.36)(b) 

                                                            zx
zx

σ
γ

G
  (4.36)(c) 
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The complete set of stress strain equations is given by Eq.(4.35) and Eq.(4.36). 

 

Because of the isotropy of the material the stress-strain relations expressed in terms of another set of 

coordinate axes (X, Y, Z) should have precisely the same form as Eq.(4.35) and Eq.(4.36). This implies 

that the shear modulus must be related to Young's modulus and Poisson's ratio. The relationship between 

the shear modulus, Young’s modulus and Poisson’s ratio for an isotropic elastic material is: 

 
E

G
2(1 ν)




 (4.37) 

The complete expression for strain in terms of stress can be presented in a matrix format as: 

 

xx xx

yy yy

zz zz

xy xy

yz yz

zx zx

ε σ1/E ν/E ν/E 0 0 0

ε σν/E 1/E ν/E 0 0 0

ε σν/E ν/E 1/E 0 0 0

γ σ0 0 0 1/G 0 0

γ σ0 0 0 0 1/G 0

γ σ0 0 0 0 0 1/G

     
    

 
    
     

    
    
    
    
       

 (4.38) 

It is often useful to be able to determine the volumetric strain and it is found that: 

 m
v

σ
ε

K
  (4.39) 

where v xx yy zzε ε ε ε   is the volumetric strain,  m xx yy zzσ σ σ σ /3    is called the mean stress and

 
E

K
3 1 2ν




 is the bulk modulus. 

Expression for stress in terms of strain  

In many cases it is necessary to calculate the stresses resulting from application of a set of strains to an 

element. Clearly in such cases it is much more convenient to have an expression for stress in terms of 

strain. There is no difficulty in developing an expression for shear stress in terms of shear strain from 

Eq.(4.36).  

 

xy xy

yz yz

zx zx

σ G . γ

σ G . γ

σ G . γ







 (4.40) 

An expression for the increase in normal stress caused by the increase in normal strain may be found by 

writing the first of the relations in Eq. (4.32) to Eq. (4.34) in the form: 

  xx xx xx yy zz

1 ν ν
ε σ σ σ σ

E E

 
    
 

 (4.41) 

and then using Eq.(4.39) to show that: 

 xx v xxσ λ ε 2G ε   (4.42) 

 
  

Eν
λ

1 ν 1 2ν


 
 (4.43) 
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The quantity  is called the Lamé modulus. Similar expressions can be found for yy and zz. Thus the 

complete expression for an increment of stress in terms of an increment of strain is: 

 

xx xx

yy yy

zz zz

xy xy

yz yz

zx zx

σ ελ 2G λ λ 0 0 0

σ ελ λ 2G λ 0 0 0

σ ελ λ λ 2G 0 0 0

σ γ0 0 0 G 0 0

σ γ0 0 0 0 G 0

σ γ0 0 0 0 0 G

    
    


    
    

    
    
    
    
       

 (4.44) 

or in a familiar matrix notation: 

 σ = D ε  (4.45) 

where 

 

xx xx

yy yy

zz zz

xy xy

yz yz

zx zx

σ ε λ 2G λ λ 0 0 0

σ ε λ λ 2G λ 0 0 0

σ ε λ λ λ 2G 0 0 0
, ,

σ γ 0 0 0 G 0 0

σ γ 0 0 0 0 G 0

σ γ 0 0 0 0 0 G

     
     


     
     

       
     
     
     
        

σ ε D  (4.46) 

D is called the matrix of elastic moduli. 

 

It is perhaps worth observing at this stage that the matrix D in Eq. (4.45) is symmetric and positive 

definite. This is a general characteristic of elastic material and leads to the reciprocal theorem used in the 

boundary element methods. 

As stated before, in an isotropic material the form of the stress-strain relation is independent of the particular 

choice of coordinate system. Therefore, the relationships given in Eq.(4.38) and Eq.(4.44) can be written for 

cylindrical polar coordinates as: 

 

rr rr

θθ θθ

zz zz

rθ rθ

θz θz

zr zr

ε σ1/E ν/E ν/E 0 0 0

ε σν/E 1/E ν/E 0 0 0

ε σν/E ν/E 1/E 0 0 0

γ σ0 0 0 1/G 0 0

γ σ0 0 0 0 1/G 0

γ σ0 0 0 0 0 1/G

     
    

 
    
     

    
    
    
    
       

 (4.47) 

 

 

rr rr

θθ θθ

zz zz

rθ rθ

θz θz

zr zr

σ ελ 2G λ λ 0 0 0

σ ελ λ 2G λ 0 0 0

σ ελ λ λ 2G 0 0 0
,

σ γ0 0 0 G 0 0

σ γ0 0 0 0 G 0

σ γ0 0 0 0 0 G

    
    


    
    

    
    
    
    
       

 (4.48) 
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4.5 Plane elasticity 

In this section we discuss three different situation where is not necessary to carry out a full three-

dimensional analysis. The three cases are plane stress, plane strain, and axial symmetry conditions. 

Unders these condition it is possible to reduce the problem to a two-dimensional problem as follows: 

 

Plane stress 

The plane stress case is shown schematically in Figure 4-8, where a uniform thin plate with uniform cross 

section along the z direction is subjected to edge loads parallel to the plane of the plate. Clearly the 

increments of stresses zz, yz, xz are all zero on both faces of the plate. It is found that to sufficient 

accuracy these are zero throughout the entire thickness of the plate. It thus follows that the stresses within 

the body are completely specified by xx, yy, xy. It can also be shown that to sufficient accuracy these 

stresses do not vary throughout the thickness of the plate and hence depend only on x, y but not on z.  

 

x

y

 

Figure 4-8 Plane stress of a thin plate 

 

The stress strain relationship can then be written in the form: 

 

xx xx

yy yy

zz

xy xy

yz

zx

ε 1/E ν/E ν/E 0 0 0 σ

ε ν/E 1/E ν/E 0 0 0 σ

ε ν/E ν/E 1/E 0 0 0
=

γ 0 0 0 1/G 0 0 σ

γ 0 0 0 0 1/G 0

γ 0 0 0 0 0

0

1/G

0

0

      
     

      
      
     
     
     
     
         

  

From this matrix equation we derive the following three equations. 

 

 

 

 

xx yy

xx

yy xx

yy

zz xx yy

σ νσ
ε

E

σ νσ
ε

E

ν
ε ε ε

1 ν







  


 (4.49) 
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The increments in stresses can be expressed in terms of the increments in strains as: 

 

   

   

2 2

xx xx

2 2

yy yy

xy xy

E/ 1 ν Eν/ 1 ν 0σ ε

σ Ev/ 1 ν E/ 1 ν 0 ε

σ γ0 0 G

      
          
       

 

 (4.50) 

The situation illustrated in Figure 4-8 and described mathematically by Eq.(4.49) and Eq. (4.50) is known 

as "plane stress". It is important to take into account that due to the Poisson effect the strain component 

zzε is not necessary zero, and should be calculated using the third equation in Eq.(4.49). 

 

Plane strain  

The second case in which a plane elasticity analysis is possible is when a long prismatic body, such as the 

one shown schematically in Figure 4-9 is subjected to loads which are uniform along the length of the 

body and are in the plane perpendicular to the axis of the body. 

x

y

 

Figure 4-9 Plane strain of a long prismatic body 

 

For these conditions it is found that the axial displacement uz is zero in the central portion of the body, 

that is the region remote from the ends, and the remaining two components of displacement are 

independent of z. This leads to the relations: 

 

yz

xz

zz

γ 0

γ 0

ε 0

   
   


   
      

 (4.51) 

In terms of the remaining components of strain, it follows from Eq. (4.44) that   
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σ 0 0 0 0 G 0

σ 0 0 0 0

0

0

0

0G

     
     
     
     
     
     
     
     
         

  

With the plane stress components of this equation we derived the two-dimensional stress-strain relation 
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xx xx

yy yy

xy xy

σ λ 2G λ 0 ε

σ λ λ 2G 0 ε

σ 0 0 G γ

    
    

     
        

 (4.52) 

The remaining non-zero component of stress is: 

  zz xx yyσ ν σ σ   (4.53) 

The situation illustrated in Figure 4-9 and described mathematically by Eq. (4.52) and Eq. (4.53) is 

known as "plane strain". In geotechnical engineering this analysis is performed in tunnels, retaining walls 

or dams with uniform cross section. In the analysis the movement along the perpendicular direction of the 

cross section is assumed to be restrained. 

 

Axial symmetry 

The third case for which another simplified form of stress-strain relationship can be presented includes 

bodies of revolution which are subjected to axi-symmetric boundary conditions. These bodies constitute 

another important category of structures which are essentially two dimensional in nature. Such structures 

are called axi-symmetric continua. 

A typical axi-symmetric body is shown in Figure 4-10. The z-axis is the vertical axis about which the 

geometry and loading is symmetric, the r axis is radially outwards and θ is the polar angle. 

 

 

r 
z 



 

Figure 4-10 Axis-symmetric body 

 

The non-zero displacement components are in z and r directions only and do not vary with θ, since the 

prescription of symmetry indicates that the tangential component of displacement is zero everywhere. 

Therefore, the vector of strain components for axi-symmetric continua can be derived from Eq. (4.17) as: 

 

rr r

θθ r

zz z

rz z r

ε u / r

ε u /r
ε

ε u / z

γ u / r u / z

    
   
    
    
   

       

 (4.54) 

The corresponding vector of stresses is:  

  
T

rr θθ zz rzσ   σ ,  σ ,  σ , σ  (4.55) 
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The stress-strain relationship for axi-symmetric continua consisting of isotropic materials can be found 

from Eq. (4.48) as: 

 
 

rr rr

zz zz

rz rz

θθ rr zz

σ λ+2G λ 0 ε

σ = λ λ+2G 0 ε

σ 0 0 G γ

σ =ν σ +σ

     
     
     
          

 (4.56) 

The situation illustrated in Figure 4-10 and described by Eq. (4.56) is known as "axial symmetry". 

4.6 Material non-linearity 

Linear, isotropic elasticity is a safe ground for finite element analysis. However, there are sophisticated 

situations where these assumptions are not valid. This is the case of analysis of soils or materials near to 

yielding point of failure, or problems where the deformation cannot be assumed to be small in comparison 

with the length scales of the system.  In these cases a non-linear analysis will be the next step after a 

linear analysis.  

 

In the non-linear analysis, we formulate the problem as a set of load increments; each one using the 

incremental stress-strain relation  

  σ = D ε  (4.57) 

Then the non-linear analysis will consist two main extensions: geometric and material non-linearity. In 

the geometric non-linearity, the deformation of the structure is tracked in each increment by updating the 

position of their nodes. Then the stiffness matrix is calculated in terms of each new configuration. The 

load path and load increments need to be specified in this analysis. If you expect that your system will 

experience large deformation, a geometric non-linearity analysis is highly recommended. 

 

An additional assumption in the non-linear analysis is the material non-linearity. It states that the stress-

strain relation D in Eq. (4.57) depends on stress and probably on the load history. One of the most widely 

used non-linear models is the elasto-plastic model. In this model we define a yield surface in the space of 

stress, which enclosed a region where only elastic deformations are possible. Plastic yielding results in the 

stress point pushing the yield surface in the stress space, so that the stress state is never outside the yield 

surface. When the stress is on the yield surface, the strain increment is decomposed into an elastic and a 

plastic part 

 Δε=Δε +Δεel pl
 (4.58) 

where the elastic part satisfies 

 el σ = D ε  (4.59) 

And the plastic part is given by the so-called non-associated flow rule 

 
pl

1
Δ = Δ

h
ε φ σ ψ  (4.60) 

The new material parameters are h= hardening modulus, φ=yield direction, and ψ=flow direction. 

Eq.(4.60) also introduces the step function: 
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0  if x 0

x  if x>0
x


 


 (4.61) 

Note that the yield surface is defined in the stress space that has six independent components. It is 

possible to reduce this space to three dimensions by using the principal component of the stress. We first 

note that the stress tensor is symmetric. From linear algebra we learn that this stress in the reference 

system of its eigenvectors is diagonal, and that the diagonal element are its eigenvalues, here called  

principal components of stresses. 

 

Thus, the stress in the reference systems of its eigenvectors is: 

 

1

2

2

σ 0 0

= 0 σ 0

0 0 σ

 
 
 
  

σ  (4.62) 

Now it is more convenient to define the yield function in the 3D space of the principal components of the 

stress tensor. Before to do that, we will define the stress invariants: 

 

Mean (hydrostatic) stress: 

  1 2 3p= σ + σ + σ /3  (4.63) 

Deviatoric (Von Mises) stress: 

      
2 2 2

VM 1 2 2 3 3 1σ σ –σ + σ –σ + σ –σ / 2 
 

 (4.64) 

Lode’s angle:  

 
2 3

1 3

σ σ1
tanθ  2 1                  

σ σ3

30 θ 30

 
  

 

    

 (4.65) 

 

These three quantities are called “invariants” because they do not change when the stress is expressed in a 

different coordinate system. The geometrical meaning of this stress invariant is depicted in Figure 4-11. 

The stress state defines a unique point in the 3D space with its principal components. Let us project this 

point on the so-called hydrostatic line given by the equation 1 2 3σ =σ =σ . The distance from the origin of 

coordinate to this projection load is the mean (hydrostatic) stress defined by Eq. (4.63). The distance from 

the stress point to the hydrostatic line is the deviatoric stress, see Eq. (4.64). Now we define the deviatoric 

plane as the plane perpendicular to the hydrostatic line containing the stress point. Finally, the orientation 

angle of the stress point in the deviatoric plane is the Lode angle. 
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2 

1 

3 
1 = 2 = 3  

Inside the surface: elastic deformation 

On the surface: plastic deformation 

 

2 1 

3 

A deviatoric plane 

1 + 2 + 3 = constant 

 

 

 

 

Figure 4-11 geometrical representation of the stress invariants 

 

For simplicity one would assume that the yielding of a material depends only on the hydrostatic and 

deviatoric stress.  In some cases it is further assumed that the yielding depends on the deviatoric stress 

only. In other circumstances, such as in cohesive-frictional materials or composites, the yield depends not 

only on the deviatoric stress but also on the hydrostatic loads. Moreover, some yielding models have been 

constructed from extension of 2D analysis, such as the Mohr-Coulomb model, leading to yield function 

that depends on the Lode angle too. In the Table 4-1 below we present a summary of the most used 

models to represent the yield function.  

 

 

 

 

 

 

 

  



 

67 

 

 

Table 4-1 Four main models of yield surfaces 

Ductile materials (steel): Yield independent on 

hydrostatic pressure 

Brittle materials (concrete): Yield dependent on 

hydrostatic pressure 

 

Tresca’s Yield criterion 

1 2 2 3 3 1

1 1 1
max( | |, | |, | |)

2 2 2
k          

 0 / 2k   

 

 

Mohr Coulomb Yield criterion 

tannc     

cohesion

angle of internal friction

c






 

 
 

Von Misses yield criterion 

     
2 2 2 2

1 2 2 3 3 1

2 2

0

–  –  – 6

3      / 3VM

k

k k

     

 

  

  
  

 
 

 

Drucker-Prager 

3
3

VMp k


    

2sin 6 cos
    

3(3 sin ) 3(3 sin )

c
k

 


 
 

 
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Problems 

 

Problem 4.1. Poisson Ratio 

A cubic sample of steel as of side L=1m as shown in green in figure below is axially stretched by a 

quantity L=1mm. The sample gets contracted in the y and z direction as shown the red cube in the 

figure. Determine the compression of the sample L’. The Poisson ratio of the sample is =0.3. 

 

 
 

 

Problem 4.2. Biaxial Test 

A long rectangular block is subjected to a biaxial stress as shown in figure below. The Young modulus is 

E=56MPa and the Poisson ratio is ν=0.4. Assuming that the stress is distributed uniformly inside the 

sample, determine the horizontal, vertical and shear deformation of the sample.  
 
 100 kPa 

 200kPa 

4 m 

5 m 

  
 

Problem 4.3. Thin Steel Plate 

A rectangular plate shown in the following figure is subjected to uniform tractions at two edges in the x 

coordinate direction. The plate dimensions are 800×400×1 mm. The Young’s modulus of the material is 

200,000MPa and the Poisson ratio is 0.3. The edge pressure is 1 MPa tensile on short sides. Assuming 

that the stress is constant in the plate, calculate all components of the strain 
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E=200,000 MPa 

=0.3 
t=1mm 1.0 MPa 1.0 MPa 

L=800 mm 

W=400 mm 

 
 

Problem 4.4. traction 

In a geological site a layer of silt was found which is inclined at 20 to the horizontal. The global and local 

coordinate systems were set up as shown in the figure. At a point on the silt layer the vertical stress is 300 

kPa and the horizontal stress is 250 kPa. Recalling that tensile normal stresses are considered to be 

positive, the stress tensor (in the global system of coordinates) is; 

 

xx xy xz

yx yy yz

zx zy zz

σ σ σ 250 0 0

σ σ σ σ 0 300 0

σ σ σ 0 0 250

   
   

     
     

  

The unit vector normal to the surface is: 

 

o

o

sin(20 )

n cos(20 )

0

 
 

  
 
 

 

Hence the traction acting on the seam is given by: 

  

x

y

z

T 250 0 0 0.3420 85.505

T 0 300 0 0.9397 281.908

T 0 0 250 0 0

        
       

   
       
              

(kPa)  

The components of traction normal and tangential to the seam are given by: 

 

 Tn=0.342085.5050.9397281.908=294.15 kPa 

 Tt=0.939785.505+0.3420281.908=16.07 kPa 

 

X

Y

x

y

20
o

Local Coordinates

Global Coordinates

xx

yy
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Problem 4.5. rotation of stress 

In a plane system the stress in global coordinates is: 

80.0000 34.6410

34.6410 40.000

 
  
 

σ (MPa) 

Calculate the traction on a plane making an angle of 120° with the x-axis.  

 

(Answer :Tx = 86.6025 MPa and Ty=50MPa) 

 

Problem 4.6. 

A local set of coordinates with the X axis inclined at 30° to the axis and the Y axis inclined at 120° to the 

x axis. If the stresses in the global (x, y) system are given by equation in Problem 4.5, show that the stress 

components in the local (X, Y) coordinate system can be given by  

 

100 0

0 20

 
  
 

Σ  (Mpa) 
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CHAPTER 5: INTERPOLATION 

 

  

 INTERPOLATION 

 

In the finite element method the body to be analysed is broken up into a number of elements that join with 

each other at a discrete number of points or nodes. The method is an approximate one and so it is not 

usual to determine the displacement of every point in every element. In fact the displacement is only 

evaluated at a number of nodes and the displacement at any other point is inferred from these nodal 

values by interpolation.  

 

In the previous section a general procedure for calculation of the stiffness matrix of a finite element was 

explained. One of the major steps in the procedure was the establishment of the relationship between the 

strains or displacements within the element and the nodal displacements. It was shown that the value of a 

quantity at any point within an element can be related to its nodal values using the shape functions. The 

aim of this section is to present a general method for derivation of the shape functions for various finite 

elements. 

5.1 One-dimensional interpolation 

A polynomial interpolation is used in derivation of the stiffness matrix for most of the finite elements. 

The use of polynomial functions allows high order elements to be formulated. In this section linear and 

quadratic interpolation functions are discussed.  

 

Linear interpolation 

Consider that a continuous function w(x) is to be approximated over the interval x1xx2 using a linear 

function (Figure 5-1). The values of the function at point 1 and 2 are W1 and W2, respectively. Assume 

that the function w(x) can be approximated by a linear function such as:  

 1 2 w(x)  a   a  x   (5.1) 

where a1 and a2 are unknown coefficients of the function. The coefficients can be determined from the 

known values at points 1 and 2.  

 
1 1 1 2 1

2 2 1 2 2

W   w(x )  a   a  x

W   w(x )  a   a  x

  

  
 (5.2) 

This set of equations can be solved for the unknown coefficients: 

 1 2 2 1 2 1
1 2

2 1 2 1

W x W x W W
a , a

x x x x

 
 

 
 (5.3) 

Therefore the value of the function w at any point x within the interval x1xx2 can be expressed as: 

 1 2 2 1 2 1

2 1 2 1

W x W x W W
w(x) x

x x x x

 
 

 
 (5.4) 
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1

2

x

1

x1 x2

W1

W2

w

 

Figure 5-1 Linear interpolation 

 

Rearranging the above equation results in: 

 2 1
1 2

2 1 2 1

x x x x
w(x) W W

x x x x

 
 

 
 (5.5) 

or: 

 1 1 2 2w(x) N (x) W N (x) W   (5.6) 

where 
2

1

2 1

x x
N (x)

x x





 and 

1
2

2 1

x x
N (x)

x x





 are called the shape functions.  

 

The shape functions depend only on the geometry of the nodal points and the type of the interpolation 

function used. The shape functions N1(x) and N2(x) vary linearly between x1 and x2 as shown in Figure 

5-2. Note that the value of the shape function N1(x) is 1 at point 1 and zero at point 2. Similarly the value 

of the shape function N2(x) is 1 at point 2 and zero at point 1.  

 

1 2

xx1 x2

N(x)

1

N1 N2

0
 

Figure 5-2 Linear shape functions 

 

Quadratic interpolation 

Consider that the value of a continuous function w(x) is to be approximated over the interval x1xx3 

using a quadratic function (Figure 5-3). The values of the function at point 1, 2 and 3 are W1, W2 and W3, 

respectively. 
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1

3

xx1 x3

W1

W3

w

W2 2

x2  

Figure 5-3 Quadratic interpolation 

 

The function w(x) can be approximated by a polynomial quadratic function such as: 

 2

1 2 3 w(x)  a   a  x  a  x    (5.7) 

where a1 to a3 are unknown coefficients of the function. The coefficients can be determined from the 

known values at points 1, 2 and 3.  

 

2

1 1 1 2 1 3 1

2

2 2 1 2 2 3 2

2

3 3 1 2 3 3 3

W   w(x )  a   a  x   a  x

W   w(x )  a   a  x   a  x

W   w(x )  a   a  x   a  x

   

   

   

 (5.8) 

This set of equations can be solved for the unknown coefficients: 

 

   

   

   

2 3 2 3 1 3 1 3 1 2 1 2 1 2 3
1

1 2 2 3 3 1

2 2 2 2 2 2

2 3 1 3 1 2 1 2 3
2

1 2 2 3 3 1

2 3 1 3 1 2 1 2 3
3

1 2 2 3 3 1

(x x )x x W (x x )x x W (x x )x x W
a

x x x x x x

(x x )W (x x )W (x x )W
a

x x x x x x

(x x )W (x x )W (x x )W
a

x x x x x x

    
 

  

    


  

    
 

  

 (5.9) 

Substituting a1, a2 and a3 into Eq. (5.7) results in a quadratic interpolation as a function of nodal values: 

 1 1 2 2 3 3w(x) N (x) W N (x) W N (x) W    (5.10) 

where 
   

   
2 3

1

1 2 1 3

x x x x
N (x)

x x x x

 


 
, 

   

   
1 3

2

2 1 2 3

x x x x
N (x)

x x x x

 


 
, 

   

  
1 2

3

3 1 3 2

x x x x
N (x)

x x x x

 


 
 are the 

quadratic shape functions.  

 

The quadratic shape functions vary quadratically between x1 and x3 as shown in Figure 5-4. The value of 

the shape function N1(x) is1 at point 1 and zero at points 2 and 3. Similarly the value of the shape 

function N2(x) is 1 at point 2 and zero at points 1 and 3, and the value of the shape function N3(x) is 1 at 

point 3 and zero at points 1 and 2. 
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1 2

xx1 x2

N(x)

1

N1

N2

N3

3

x3

0
 

Figure 5-4 Quadratic shape functions 

 

The method used above for calculation of the linear of quadratic shape functions can be applied to 

calculate higher order interpolation functions. However, for higher order polynomials it is difficult to find 

the unknown coefficients. An alternative method is presented in the next section that is applicable to all 

types of one or two-dimensional interpolation functions.  

5.2 General procedure for derivation of shape functions 

Suppose an element has m nodes and the values of some quantity of interest (w), such as displacement, 

head, temperature, are known at each of the nodes. It is assumed that within the element the variation of 

w at position x can be approximated by a polynomial expression: 

 1 1 2 2 k k m mw(x)  a f (x)  a f (x)  .  a f (x)  .  a f (x)         (5.11) 

where ak are polynomial coefficients and fk  are known functions of the position x. Eq. (5.11) can be 

written in matrix format as: 

 
T Tw(x)  a . f(x)  f (x) . a   (5.12) 

where a=[a1, a2, …. , ak, .. am]T and f(x) = [f1(x) , f2(x) , …., fk(x) , …. , fm(x)] T. 

 

Suppose that the element nodes are located at the points x1, x2, .…, xm. At the ‘kth’ node the value of the 

quantity w is: 

 k 1 1 k 2 2 k k k k m m kW   a f (x )  a f (x )  . a f (x )  .  a f (x )        (5.13) 

Eq. (5.13) holds at each of the m nodes. These equations may be written in matrix form as follows: 

 W  C . a  (5.14) 

where 

1

2

k

m

a

a

:
a

a

:

a

 
 
 
 

  
 
 
 
  

, 

1

2

k

m

W

W

:
W

W

:

W

 
 
 
 

  
 
 
 
  

, 

1 1 2 1 K 1 m 1

1 2 2 2 k 2 m 2

1 k 2 k k k m k

1 m 2 m k m m m

f (x ) f (x ) . , , f (x ) . . . f (x )

f (x ) f (x ) . . . f (x ) . . . f (x )

. . . . . . .. . .. . . . . . . . . .
C

f (x ) f (x ) . . . f (x ) . . . f (x )

. . . . . . . . . . . . . . . . . .

f (x ) f (x ) . . . f (x ) . . . f (x )

 
 
 
 

  
 
 
 
  

 

The solution of Eq. (5.14) is: 

 -1a  C W  (5.15) 
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When a from Eq. (5.15) is substituted into Eq. (5.12) it is found that the quantity of interest can be expressed 

in the form of: 

 
T -1 Tw(x)  f (x).C .W  N (x) W   (5.16) 

where NT(x)= fT(x).C-1 = [ N1(x), N2(x), …., Nk(x), …. Nm(x) ] is the vector of shape functions. 

 

If Eq. (5.16) for w(x) is written out in full it takes the form of: 

 1 1 2 2 k k m mw(x) W N (x) W N (x)  .  W N (x), .  W N (x)        (5.17) 

The above equation expresses the value of the quantity w at any position x in terms of the m nodal 

values W1 to Wm and the shape functions N1(x) to Nm(x) which can be determined from Eq. (5.16). 

Assume that the inverse of the matrix C is: 

 

11 1m

1

m1 mm

γ γ

C

γ γ



 
 


 
  

 (5.18) 

where the coefficients ij are known values. Thus the vector of shape functions is: 

 

T

1 11 m m1

T T 1

1 1m m mm

f (x)γ f (x)γ

N (x) f (x)C

f (x)γ f (x)γ



  
 

 
 
   

 (5.19) 

Therefore each of the shape functions Nk is given by: 

 k 1 1k 2 2k k kk m mkN   f (x)γ   f (x)γ     f (x)γ   . f (x)γ         (5.20) 

 

Example 5.1 

The linear shape functions for a one-dimensional two-noded element can be found using the generalized 

method. The function used for approximation of w at position x is: 

    
T T

1 2 1 2w(x)  a   a  x  1, x  . a , a   f (x) . a     

where fT(x) = [f1(x), f2(x)] = [1, x] and a=[a1, a2]
T. Then matrix C can be written as: 

 
1

2

1 x
C

1 x

 
  
 

 

 

2 1

2 1 2 11

2 1 2 1

x x

x x x x
C

1 1

x x x x



 
  

 
 
   

 

Therefore the vector of the shape functions is calculated as: 
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 

2 1

2 1 2 1T T 1 2 1

2 1 2 1 2 1 2 1

2 1 2 1

x x

x x x x x xx x
N (x) f (x) . C 1, x ,

1 1 x x x x x x x x

x x x x



 
        

          
            

 

And the shape functions for linear one-dimensional elements are: 

 2 1
1 1

2 1 2 1

x x x x
N (x) and N (x)

x x x x

 
 

 
 

 

Example 5.2  

The quadratic shape functions for a one-dimensional three-noded element can be found as follows. 

  
T2 2 T

1 2 3 1 2 3 w(x)  a   a  x  a  x  1, x, x  . a , a , a   f (x) . a        

where fT(x) = [f1(x), f2(x), f3(x)] = [1, x, x2] and a=[a1, a2, a3]
T. Then matrix C is: 

 

2

1 1

2

2 2

2

3 3

1 x x

C 1 x x

1 x x

 
 

  
 
 

 

 

           

           

           

2 3 1 3 1 2

1 2 1 3 2 1 2 3 3 1 3 2

1 2 3 1 3 1 2

1 2 1 3 2 1 2 3 3 1 3 2

1 2 1 3 2 1 2 3 3 1 3 2

x x x x x x

x x x x x x x x x x x x

x x x x x x
C

x x x x x x x x x x x x

1 1 1

x x x x x x x x x x x x



 
 

      
   

    
      

 
 

       

 

Therefore the vector of the shape functions for quadratic one-dimensional elements is calculated as: 

 
   

   

   

   

   

   
2 3 1 3 1 2T T 1

1 2 1 3 2 1 2 3 3 1 3 2

x x x x x x x x x x x x
N (x) f (x)C , ,

x x x x x x x x x x x x


           

                         

 

5.3 Two-dimensional interpolation 

The general method explained in the previous section can be used to derive the shape functions for 

two-dimensional elements. The shape functions for linear triangles and rectangles are calculated here. The 

quadratic shape functions for a triangular element are also derived for a specific case. 

 

Linear triangles 

Consider the quantity w is known at 3 nodes of a triangular element having its vertices at nodes 1, 2 and 3 

as shown in Figure 5-5 The coordinates of nodes 1 to 3 are (x1,y1), (x2,y2), and (x3,y3) respectively and the 

values of w at nodes are W1, W2 and W3. If it is assumed that within the element the variation of w is 

linear with respect to x and y, then the value of w at position (x, y) can be approximated by a simple 

polynomial expression such as: 
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 1 2 3w(x, y)  a  a  x a  y    (5.21) 

or 

    
T T

1 2 3w(x, y)  1, x, y  . a , a , a   f (x, y) . a   

 

 

Figure 5-5 Linear triangular element 

 

The values of w are known at the nodes. Therefore, Eq. (5.21) can be written for all the nodes by 

substituting the coordinates of the nodes into Eq. (5.21): 

 

1 1 2 1 3 1

2 1 2 2 3 2

3 1 2 3 3 3

W   a   a  x   a  y

W   a   a  x   a  y

W   a   a  x   a  y

  

  

  

 (5.22) 

or 

 

1 1 1 1

2 2 2 2

3 3 3 3

W 1 x y a

W 1 x y a or W  C . a

W 1 x y a

     
     

 
     
          

 

The quantity w(x, y) can now be expressed in the form of: 

 

T -1 T

1 1 2 2 3 3

w(x, y)  f (x, y).C .W  N (x, y) W

 N (x, y).W   N (x, y).W   N (x, y).W

 

  
 (5.23) 

with 

 

and 2∆=det [C]= (x2y3 –x3y2)- (x1y3–x3y1)+ (x1y2–x2y1) =2area of triangle. 

 

The shape functions can be found as: 

























123123

211332

122131132332

1

xxxxxx

yyyyyy

yxyxyxyxyxyx

2Δ

1
C
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  
2 3 3 2 3 1 1 3 1 2 2 1

T T 1

2 3 3 1 1 2

3 2 1 3 2 1

x y x y x y x y x y x y
1

N (x,y) f (x,y)C 1, x, y y y y y y y
2Δ

x x x x x x



   
 

    
 
    

 (5.24) 

 

2 3 3 2 2 3 3 2

1

3 1 1 3 3 1 1 3
2

3
1 2 2 1 1 2 2 1

(x y x y ) x(y y ) y(x x )

2ΔN (x, y)
(x y x y ) x(y y ) y(x x )

N(x,y) N (x, y)
2Δ

N (x, y)
(x y x y ) x(y y ) y(x x )

2Δ

     
 

   
        

   
          

  

 (5.25) 

The correctness of the shape functions may be verified by checking the following conditions: 

 

1) iN (x, y) 1  at every point within the element 

2) 
i i i

i

N (x, y) 1 at node i where x x and y y

N (x, y) 0 at all nodes k where k i

  

 
  

 

It can be shown that the sum of all the shape functions is equal to 1, so that condition 1 is satisfied. 

Condition 2 is also true for all the shape functions. For example, at node 1, x = x1 and y = y1:  

 2 3 3 2 1 2 3 1 3 2
1 1 1

2 3 3 2 1 3 3 1 1 2 2 1

(x y x y ) x (y y ) y (x x )
N (x , y ) 1

(x y x y ) (x y x y ) (x y x y )

    
 

    
 

At node 2, x = x2 and y = y2:  

 2 3 3 2 2 2 3 2 3 2
1 2 2

(x y x y ) x (y y ) y (x x )
N (x , y ) 0

2Δ

    
   

At node 3, x = x3 and y = y3:  

 2 3 3 2 3 2 3 3 3 2
1 3 3

(x y x y ) x (y y ) y (x x )
N (x , y ) 0

2Δ

    
   

 

Example 5.3 

Consider a seepage analysis and suppose that the head has been determined at 3 vertices (nodes) of a 

triangular element. The coordinates (x, y) of the nodes and the value of the head (h) are shown in the table 

below: 

Node x (m) y (m) H (m) 

1 0.4 0.6 1.832 

2 4.0 1.4 66.76 

3 1.4 3.0 - 8.968 

 

If it is assumed that the head may be approximated linearly throughout the element by the simple 

expression: 

 1 2 3h(x,y)  a   a  x  a  y    

Determine the head at point xo = 2.0, yo = 1.5. 



 

79 

The variation of h can be approximated as: 

 T

1 1 2 2 3 3h(x, y)  N (x, y).H  N (x, y).H   N (x, y).H   N (x, y).H     

where H=[1.832,   66.76,   -8.968]T is the vector of the known nodal head values.  

 

The shape functions for the triangular element can be calculated from Eq. (5.25) 

 

2 3 3 2 2 3 3 2

1

3 1 1 3 3 1 1 3
2

3
1 2 2 1 1 2 2 1

(x y x y ) x(y y ) y(x x )

2ΔN (x, y) 1.281 0.204x 0.332y
(x y x y ) x(y y ) y(x x )

N(x,y) N (x, y) 0.046 0.306x 0.128y
2Δ

N (x, y) 0.235 0.
(x y x y ) x(y y ) y(x x )

2Δ

     
 

     
            

   
           

  

102x 0.459y

 
 
 
  

 

 

The values of the shape functions at point xo = 2.0, yo = 1.5 are: 

1 o o

o o 2 o o

3 o o

N (x , y ) 1.281 0.204 0.332   

N(x , y )  N(2.0, 1.5)  N (x , y )   0.046 0.306 0.128    

N (x , y ) 0.235 0.102 0.459

          
     

         
     
               

 

 T

o o o o 1 o o 1 2 o o 2 3 o o 3h(x , y )  N (x , y ).H  N (x , y ).H   N (x , y ).H   N (x , y ).H     

 
Th(2.0, 1.5)   {0.375,  0.375,  0.25} . {1.832,  66.76,  -8.968}  23.48 m   

 

The shape functions can be used to obtain other quantities of interest, for example the hydraulic gradients: 

 
 T T

31 2
x 1 2 3

N (x, y).H N (x, y)N (x, y) N (x, y)h(x, y) N (x, y)
i .H H H H

x x x x x x

   
     

     
 

 

The derivatives of the shape functions with respect to x and y are: 

 

1 1

2 2

3 3

N (x, y)/ x 0.204 N (x, y)/ y 0.332
N(x,y) N(x,y)

N (x, y)/ x 0.306 and N (x, y)/ y 0.128
x y

N (x, y)/ x 0.102 N (x, y)/ y 0.459

            
        

         
        
                   

 

 

It can be seen that the derivatives of the shape functions, which were derived according to a linear 

interpolation function, have constant values over the entire area of the triangular element. Therefore, at 

point xo = 2.0, yo = 1.5, or at any other point within the triangle, the hydraulic gradients with respect to x 

and y are: 

ix = -0.204  1.832 +0.306  66.76 + 0.102  8.968 = 20.978 m/m 

iy = -0.332  1.832 – 0.128  66.76 – 0.459  8.968 = -13.241 m/m 
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Linear rectangles 

The shape functions for a rectangular element are derived in this section by a direct method as well as by 

the general procedure explained in the previous section.  

 

A rectangular element which lies in the x, y plane and has sides of length A and B has its nodes at P1(0,0), 

P2(A,0), P3(A,B), P4(0,B). Suppose that throughout the element the variation of w can be approximated as 

follows: 

 1 2 3 4

x y xy
w(x,y) =  +  +  + a a a a

A B AB
 (5.26) 

If w is evaluated at the 4 nodes of the rectangular element it follows that: 

 

1 1

2 1 2

3 1 2 3 4

4 1 3

W   a

W   a   a

W   a   a   a   a

W   a   a



 

   

 

 (5.27) 

Solving Eq.  (5.14) for the coefficients a1, ,a4 results in: 

 

1 1

2 2 1

3 4 1

4 1 3 2 4

a   W

a   W   W

a   W   W  

a   W   W   W   W



 

 

   

 (5.28) 

If Eq. (5.28) is substituted in Eq. (5.26) it is found that: 

 1 1 4 1 1 3 2 42

x y xy
w(x,y) =  + (W   )  + (   ) + (  +     )W W W W W W W W

A B AB
     (5.29) 

or upon collecting terms: 

 2 3 41

x y xy x xy xy y xy
w(x,y) W (1     + ) + (   ) +  ( ) +  (   )W W W

A B AB A AB AB B AB
      

This may be rewritten: 

 1 1 2 2 3 3 4 4w(x,y) =  (x,y) + (x,y) + (x,y) + (x,y)W N W N W N W N  

where Nk are the shape functions and in this case have the explicit expressions: 

 

1

2

3

4

x y xy x y
N (x,y) 1 (1 )(1 )

A B AB A B

x xy x y
N (x,y) (1 )

A AB A B

xy
N (x,y)

AB

y xy y x
N (x,y) (1 )

B AB B A

      

   



   

 (5.30) 

The correctness of the shape functions can be checked; each of the shape functions Ni takes the value 1 at 

the node i but zero at all other nodes. This is a general property of shape functions and ensures that w= Wi 

at each of the nodes i. The sum of all the shape functions at any arbitrary point (x,y) is equal to 1. 
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The general procedure explained in the previous section can also be followed to derive the shape 

functions for the rectangular element.  

  
T T

1 2 3 4 1 2 3 4

x y xy x y xy
w(x,y) =  +  +  + 1, , , . a , a , a , a f (x,y) . aa a a a

A B AB A B AB

 
  
 

 (5.31) 

Therefore: 

 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

1 x /A y /B x y /AB 1 0 0 0

1 x /A y /B x y /AB 1 1 0 0
C

1 x /A y /B x y /AB 1 1 1 1

1 x /A y /B x y /AB 1 0 1 0

   
   
    
   
   

  

 

 1

1 0 0 0

1 1 0 0
C

1 0 0 1

1 1 1 1



 
 

 
 
 

  

 

Then the shape functions can be derived from: 

 T T 1

1 0 0 0

1 1 0 0x y xy
N (x,y) f (x,y)C 1, , , .

1 0 0 1A B AB

1 1 1 1



 
 
         
 

  

 (5.32) 

As: 

 

1

2

3

4

x y xy x y
N (x,y) 1 (1 )(1 )

A B AB A B

x xy x y
N (x,y) (1 )

A AB A B

xy
N (x,y)

AB

y xy y x
N (x,y) (1 )

B AB B A

      

   



   

 (5.33) 

The above expressions for the shape functions are identical to those obtained previously, Equation (5.30) 

 

Quadratic triangle 

The shape functions for a 6-noded triangular element are derived here for a specific case using the general 

procedure explained in Section 5.2.  

 

Suppose that in a seepage analysis the head has been determined at 6 nodes of a triangular element having 

its vertices at nodes 1, 3, 5. Nodes 2, 4 and 6 are located at the mid-side of the triangle. The coordinates 

(x, y) of the nodes and the value of the head (h) are shown in the table below: 
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Node x (m) y (m) H (m) 

1 0.4 0.6 1.832 

2 2.2 1.0 22.968 

3 4.0 1.4 66.760 

4 2.7 2.2 27.488 

5 1.4 3.0 - 8.968 

6 0.9 1.8 - 1.248 

 

Assume that the head may be approximated throughout the element by a polynomial expression: 

 2 2 T

1 2 3 4 5 6h(x,y)  a   a  x  a  y  a  x   a  x y  a  y   f (x,y). a        

  
T2 2 T

1 2 3 4 5 6h(x,y)  1  x  y  x  x y   y  a   a    a   a   a   a  f (x,y) a     

Therefore matrix C is calculated as: 

 

1.00 0.40 0.60 0.16 0.24 0.36

1.00 2.20 1.00 4.84 2.20 1.00

1.00 4.00 1.40 16.00 5.60 1.96
C

1.00 2.70 2.20 7.29 5.94 4.84

1.00 1.40 3.00 1.96 4.20 9.00

1.00 0.90 1.80 0.81 1.62 3.24

 
 
 
 

  
 
 
 
  

 

 
1

2.00 0.24 0.05 0.04 0.34 1.20

0.84 1.61 0.36 0.27 0.20 0.33

1.37 0.59 0.15 0.04 0.89 2.66
C

0.08 0.25 0.19 0.12 0.02 0.08

0.27 0.30 0.16 0.61 0.19 0.24

0.22 0.17 0.03 0.23 0.42 0.61



  
 
   
 
   

  
  

    
 

  

 

Thus the shape functions for the 6-noded triangular element are: 

 

T

T T 1

2

2

1 2.00 0.24 0.05 0.04 0.34 1.20

x 0.84 1.61 0.36 0.27 0.20 0.33

y 1.37 0.59 0.15 0.04 0.89 2.66
N (x,y) f (x,y)C .

x 0.08 0.25 0.19 0.12 0.02 0.08

xy 0.27 0.30 0.16 0.61 0.19 0.24

y 0.22 0.17 0.03 0.23



  
 

   
 
    

   
  

     
 

  0.42 0.61

 
 
 
 
 
 
 
 

 

 

 

2 2

2 2

2 2

2 2

2 2

2.00 0.84x 1.37y 0.08x 0.27xy 0.22y

0.24 1.61x 0.59y 0.25x 0.30xy 0.17y

0.05 0.36x 0.15y 0.19x 0.16xy 0.03y
N(x,y)

0.04 0.27x 0.04y 0.12x 0.61xy 0.23y

0.34 0.20x 0.89y 0.02x 0.19xy 0.42y

1.

     

     

     


     

     

 2 220 0.33x 2.66y 0.08x 0.24xy 0.61y

 
 
 
 
 
 
 
 

      
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The head at point xo = 2.0, yo = 1.5 can be calculated as: 

 T T -1

o o o o o oh(x , y )  N (x , y ).H  f (x , y ). C  . H   

  T T

o of (x , y )  1 , 2 , 1.5 , 4.0 , 3.0 , 2.25  

 

 

T

T T 1

1.00 2.00 0.24 0.05 0.04 0.34 1.20

2.00 0.84 1.61 0.36 0.27 0.20 0.33

1.50 1.37 0.59 0.15 0.04 0.89 2.66
N (2,1.5) f (2,1.5).C .

4.00 0.08 0.25 0.19 0.12 0.02 0.08

3.00 0.27 0.30 0.16 0.61 0.19 0

2.25



  
 

   
 
    

   
  

     
 
 

.24

0.22 0.17 0.03 0.23 0.42 0.61

 
 
 
 
 
 
 
 

  

 

  TN (2, 1.5) 0.094 , 0.563 , 0.094 , 0.375 , 0.125 , 0.375     

 

 
Th(2, 1.5)  N (2, 1.5).H  17.45 m   

 

The hydraulic gradient with respect to x can be calculated as follows: 

 
   T T 1T T

1

x

N (x, y).H f (x, y).Ch(x, y) N (x, y) f (x, y)
i .H H C H

x x x x x




   

    
    

 

where fT(x,y)/ x =[0 , 1 , 0 , 2x , y , 0]. At point xo=2.0, yo=1.5: fT(xo, yo)/ x =[0 , 1 , 0 , 4 , 1.5 , 0]. 

 

The hydraulic gradient at xo=2.0, yo=1.5 is calculated as ix=18.2m/m. The hydraulic gradient with respect 

to y can also be calculated in the same way as iy=5.4m/m. The hydraulic gradient is a function of x and 

y since the variation of the head is no longer linear but quadratic throughout the element. For example the 

hydraulic gradients at point xo=2.0, yo=2.0 are ix=19.2m/m and iy=8.4m/m. 

 

Problems 

 

Problem 5.1. beam deflection 

It is observed that a beam, which lies in the interval 0< x <2m, undergoing flexural distortion has 

deflections v1 = 10mm when x = 0 and v2 = 12mm when x = 2m and rotations 1 = 0.01 when x = 0 and 

2 = 0.02 when x = 2m where  = v/x. Assuming that v = a1 + a2 x + a3 x
2  + a4 x

3 calculate the 

deflection, rotation and curvature  (2v/x2) at x = 1.5m. 

(Answer: v=18.25 mm, =-0.0057, 2v/x2=-0.024 m-1) 

 

Problem 5.2. T6 element 

For the 6-noded triangular element considered in Example 5.4, assume that the vector of nodal head is:  

  
T

H  1.832 , 34.296 , 66.76 , 28.896 , 8.968 , 3.568    
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Calculate the hydraulic gradients, ix and iy, at points xo=2.0, yo=1.5 and xo=2.0, yo=2.0. Compare the 

results with those obtained in Example 5.3. Explain a reason for similarity between the results obtained 

here with those obtained from a 3-noded element in Example 5.3. 

 

Problem 5.3. Rectangular element 

A rectangular element bounded by the lines x = 0, x = 2a, y = 0, y = 2b has nodes at its vertices and the 

midpoints of its sides. Assume an appropriate polynomial function for variation of quantities within the 

element and show that the shape functions for node 4 (x = 2a, y = b) and node 5 (x = 2a, y = 2b) are: 

 
4 2

xy(2b y)
N

2ab


  

 
5

3xy(x/3a y/3b 1)
N

4ab

 
  

 

Problem 5.4. Triangular element  

A triangular plane element has 6 nodes at the points (xi, yi ); i = 1, ..., 6. Assuming the temperature T can 

be approximated in the form: 

 2 2

1 2 3 4 5 6T  a   a x  a y  a x   a xy  a y       

Determine the shape functions for the element in the global coordinate system and in a local coordinate 

system which has its origin at the centroid and the X axis parallel to the side joining nodes 1-3 (vector 13 

should run in the positive X-direction).  

 

Use these to calculate the temperature at the centroid and the temperature gradients T/x, T/y and 

T/X, T/Y 

 

Your particular values of (xi, yi Ti ) i = 1, ..., 6 will be given to you. Temperatures are in oc and 

coordinates in meters. Make sure you show the units of your answers. 

Your solution should have: 

 

 (a) Data (xi, yi Ti ) 

 (b) Shape function N4 in global coordinates (x,y) 

 (c) Shape function N4 in local coordinates (X,Y) 

 (d) The temperature at the centroid of the element 

 (e) The temperature gradients T/x, T/X at the centroid 
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CHAPTER 6: FINITE ELEMENT FORMULATION OF ELASTIC CONTINUA 

 

  

FINITE ELEMENT FORMULATION OF ELASTIC 

CONTINUA 

 

In the finite element analysis of a problem, the system is idealised as a number of finite elements 

interconnected only at their nodes. In the analysis of structures consisting of bars and beams, the elements 

making up the complete structure usually correspond to well-defined parts of the structure. However 

when a two- or three-dimensional structure such as a concrete slab or a soil foundation is analysed, there 

may not clear discrete parts. Rather the continuum is divided into finite elements by making imaginary 

cuts. There is generally no unique way of idealising a continuum structure with finite elements because 

such elements provide only approximate mathematical relationships of the continuum structure.  

 

The accuracy of the finite element solution of a continuum problem is dependent on the number, type, and 

arrangement of the finite elements from which the structure is assembled. Considerable choices are 

available for the basic shape of the elements, the function used to approximate the displacement field for 

the elements, and the arrangement of the elements. This chapter will cover only the classical two-

dimensional finite elements that are used in plane elasticity. 

 

Plane elasticity encompasses continuum problems of plane stress, plane strain and axial symmetry. The 

formulation of each type of problem is almost the same, and the computer code for solving plane stress 

problems can be adopted with only minor modifications to plane strain and axial symmetry. In plane 

stress problems the forces normal to the plane are zero. In plane strain analysis the “out-of-plane” 

displacements are zero. Problems of this kind can basically be treated as two-dimensional problems. 

 

In the first section we will convert the strong formulation of the continuum mechanics of the previous 

chapter in the weak form, which is better known as principle of virtual work. Then we introduce the 

general method to formulate the equations of the finite element analysis. Next we illustrate some simplest 

formulations by introducing one of the simplest yet most versatile family of finite elements, the triangular 

elements. Then we introduce the linear rectangular element, which is the basis of more sophisticated, high 

order, rectangular elements used in most commercial codes. 

6.1 Derivation of the weak form 

Here we present the derivation of the weak form, or principle of virtual work, for a general continuum 

mechanics problem we assume that in the domain V the continuum structure satisfies the differential 

equation: 

  T ( ) ( ) L σ x w x 0  (6.1) 

 ( )= ( )σ x Dε x  (6.2) 

  ( ) ( )ε x L u x  (6.3) 

Where L is the differential operator corresponding to the governing equations. Let us consider a problem 

without essential boundary conditions. The only boundary condition is given by the flux at the boundary 
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 ( ). ( )       S σ x n τ x x  (6.4) 

where τ(x) is the traction applied at the boundary surface S of the domain. The vector n is a unit vector 

perpendicular to the surface at point x.  

 

We introduce here a virtual displacement *( )u x . Eq. (6.1) is multiplied by a virtual displacement and 

integrated over the domain 

  *T T

V

( ) ( ) dV           u L σ x w x 0  (6.5) 

The next step is to use a generalized rule to integrate by part the first terms of this equations.  This 

integration involve a quite large amount of mathematical steps that we will not include here.  The final 

result will correspond to a generalized principle of virtual work: 

 *T *T *T

V S V

dV dA+  dV           ε σ u τ u w  (6.6) 

This principle stares that the virtual work done by the internal stresses equals the work done by the 

boundary tractions plus the work done by the external actions.   

6.2 Derivation of the stiffness matrix 

Using the principle of virtual work, the finite element formulation can be derived as follows: 

1) The displacement function is connected to the displacement at the nodes using the shape function  

 e eu N u  (6.7) 

2) Strains  =ε L u are connected to nodal displacement  

  e e e e         =ε B u B L N  (6.8) 

3) Using constitutive equation σ Dε ,  the stress is related to displacement 

 e eσ DB u  (6.9) 

4) Replace the above equation of stress and strain in the principle of virtual work Eq. (6.6), with 
* *

eu Nu as the virtual displacement, and * *

eε Bu  satisfying the corresponding virtual strain: 

 

e e e

*T T *T T *T T

e e e e e

V V S

dV dV da            u B DB u u N w u N τ  (6.10) 

where Ve is the volume of the element and Se is the surface of the element where the traction is 

applied. Since the equation is valid for any virtual displacement satisfying the boundary condition, 

the equation above becomes: 

 e e ek u = f  (6.11) 

 

e

T

e e e

V

dV k B DB  (6.12) 

 

e

T T

e e e

V

dV da

eS

  f N w N τ  (6.13) 

Here we conclude that the calculation of the element stiffness matrix requires three steps: 
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1) Calculate Ne 

2) Calculate B by applying the derivative operator to Ne as Be=L[Ne] 

3) Use Eq. (6.12) to get the stiffness matrix and Eq. (6.13) To get the load vector 

 

In the next sections we will illustrate the method using linear triangular elements and linear rectangular 

elements.  

6.3 Triangular elements in plane elasticity (T3) 

A general procedure is given to calculate the stiffness matrix of a simple 3-noded triangular element. The 

simple triangular element has nodal points at its vertices only. A range of higher-order triangular elements 

having additional nodes and consequently a more refined representation of displacement and stress fields 

has been proposed to increase accuracy. Some of the higher-order triangular elements will also be 

introduced in the next chapter. 

 

The 3-noded triangular element shown in Figure 6-1 is the simplest possible planar element and one of 

the earliest finite elements. It has nodes at the vertices of the triangle only. For a plane elasticity problem, 

where all displacements are in the plane, the element has two degrees-of-freedom at each node, u and v, 

corresponding to the displacements in x and y directions respectively. Thus the element has a total of 6 

degrees-of-freedom. The displacement vector and the force vector are: 

 
T

e 1 1 2 2 3 3u v u v u v   u  

 
T

e 1 1 2 2 3 3p q p q p q   f  

Since each of these vectors contains 6 components, the size of the element stiffness matrix, ke, is 66.  

 

u1, p1

v1, q1

x, u, p

y, v, q

1

3

2
u2, p2

v2, q2

u3, p3

v3, q3

 

Figure 6-1 Three-noded triangular element 

 

Stiffness matrix of linear triangular finite element 

The general procedure explained in Section 6.2 employed here to calculate the stiffness matrix of the 3-

noded triangular element. The node numbering and the Cartesian coordinate system shown in Figure 

6-1are used for the element. The nodes are numbered in increasing order anti-clockwise. The coordinates 

of the nodes are (x1,y1), (x2,y2) and (x3,y3). It is noted that the orientation of the element with respect to 
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the xy coordinate system is completely arbitrary. Therefore the element stiffness matrix will be directly 

expressed in the xy global coordinate system. Here we perform the three steps mentioned in Section 6.2 to 

calculate the stiffness matrix: 

 

1. Derivation of the shape function N 

The variation of the displacement components, u and v, within the element can be expressed as 

complete linear polynomials of x and y: 

 

T

1 2 3

T

1 2 3

u(x,y) a a x a y= (x,y)

v(x,y) b b x b y= (x,y)

  

  

g a

g b
 (6.14) 

where  
T

(x,y) 1 x yg ,  
T

1 2 3a a aa  and  
T

1 2 3b b bb . The values of u and v are 

known at the nodes. Therefore, Eq. (6.14) can be written for all the nodes by substituting the 

coordinates of the nodes into these equations: 

 

1 1 2 1 3 1 1 1 1 1

2 1 2 2 3 2 2 2 2 2

3 1 2 3 3 3 3 3 3 3

u   a   a  x   a  y u 1 x y a

u   a   a  x   a  y or u 1 x y a

u   a   a  x   a  y u 1 x y a

        
     

   
     
             

 

 

1 1 2 1 3 1 1 1 1 1

2 1 2 2 3 2 2 2 2 2

3 1 2 3 3 3 3 3 3 3

v   b   b  x   b  y v 1 x y b

v   b   b  x   b  y or v = 1 x y b

v   b   b  x   b  y v 1 x y b

        
     

  
     
             

 

We rewrite these equations as 

 e e  and    u Ca v Cb  (6.15) 

where  

 

1 1

2 2

3 3

1 x y

1 x y

1 x y

 
 


 
  

C  (6.16) 

Using Eqs. (6.14) and (6.16) the displacement fields u(x, y) and v(x,y) can now be expressed in the 

form of: 

 

T -1 T

e e

T -1 T

e e

u(x, y)  (x, y)   (x, y) 

v(x, y)  (x, y)   (x, y) 

 

 

g C u N u

g C v N v
 (6.17) 

with 

 

2 3 3 2 3 1 1 3 1 2 2 1

1

2 3 3 1 1 2

3 2 1 3 2 1

x y x y x y x y x y x y
1

y y y y y y
2A

x x x x x x



   
 

   
 
    

C  

where 2A=det [C]= (x2 y3 –x3 y2)- (x1 y3 –x3 y1)+ (x1 y2 –x2 y1) =2  area of triangle. The shape 

functions can be found as: 
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  
2 3 3 2 3 1 1 3 1 2 2 1

T T 1

2 3 3 1 1 2

3 2 1 3 2 1

x y x y x y x y x y x y
1

(x,y) (x,y) 1, x, y y y y y y y
2A

x x x x x x



   
 

    
 
    

N g C  (6.18) 

 

2 3 3 2 2 3 3 2

1

3 1 1 3 3 1 1 3
2

3
1 2 2 1 1 2 2 1

(x y x y ) x(y y ) y(x x )

2AN (x, y)
(x y x y ) x(y y ) y(x x )

(x,y) N (x, y)
2A

N (x, y)
(x y x y ) x(y y ) y(x x )

2A

     
 

   
        

   
          

  

N  (6.19) 

The general displacements within the element can be related to the nodal displacements using shape 

functions: 

 

T

1 1 2 2 3 3 e

T

1 1 2 2 3 3 e

u N u N u N u =

v N v N v N v =

  

  

N u

N v
 (6.20) 

Eq. (6.20) can now be written in matrix format as: 

 

1

1

1 2 3 2

e e

1 2 3 2

3

3

u

v

N 0 N 0 N 0 uu
or u(x,y)

0 N 0 N 0 N vv

u

v

 
 
 
   

    
     

 
 
  

N u  (6.21) 

2. Derivation of the matrix B 

The matrix Be has been defined for a general case in Eq. (6.8) and contains derivatives of the shape 

functions. 

 

  1 2 3

e e

1 2 3

1x 2x 3x

e 1y 2y 3y

1y 1x 2y 2x 3y 3x

0
x

N 0 N 0 N 0
0

0 N 0 N 0 Ny

y x

N 0 N 0 N 0

0 N 0 N 0 N

N N N N N N

 
 
 
   

     
   

  
 
  

 
 

  
 
 

B L N

B

 (6.22) 

The derivatives of the shape functions for the triangular element can be obtained as: 
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1x 2 3

1y 3 2

2x 3 1

2y 1 3

3x 1 2

3y 2 1

N (y y )

N (x x )

N (y y )1

N (x x )2A

N (y y )

N (x x )

   
   

   
   

   
   

   
   

     

 (6.23) 

Therefore the matrix Be is obtained for the linear triangular element as: 

 

2 3 3 1 1 2

e 3 2 1 3 2 1

3 2 2 3 1 3 3 1 2 1 1 2

(y y ) 0 (y y ) 0 (y y ) 0
1

0 (x x ) 0 (x x ) 0 (x x )
2A

(x x ) (y y ) (x x ) (y y ) (x x ) (y y )

   
 

   
 
       

B  (6.24) 

It can be seen that Be and therefore strains within the linear triangular element are independent of x 

and y. For this reason, this element is often called the “constant strain triangle”. 

 

3. Calculating the element stiffness matrix 

The internal stress can be related to the external loads using the principle of virtual work for the 

element. This leads to the equation for calculation of the element stiffness matrix. 

 

e

T T

e e e e e

V

dV At k B DB B DB  (6.25) 

where A and t are the area and the thickness of the element, respectively. Note that because Be and D 

are independent of coordinate location (x, y), the integration over this element can be performed 

easily and exactly.  

6.4 Linear rectangular element in plane elasticity (Q4) 

The linear rectangular element is the simplest rectangular element for planar analysis. The interpolation 

function used to approximate variation of displacements within the element is linear with respect to x and 

y. For simplicity, a Cartesian coordinate system is adopted where the axes x and y run along two of the 

element edges, as shown in Figure 6-2. Therefore this coordinate system is the local one. The origin of the 

x-y axes is chosen for convenience to be at a corner of the rectangle, but could be located at some other 

points without affecting the procedure for calculation of the element properties. The element has nodes at 

the four corner points, each node has 2 degrees-of-freedom u and v, corresponding to the displacements in 

x and y directions respectively Figure 6-2. Thus the element has a total of 8 degrees-of-freedom. The 

displacement vector and the force vector are: 

 
T

e 1 1 2 2 3 3 4 4u v u v u v u v   u  

 
T

e 1 1 2 2 3 3 4 4p  q  p q p q p q   f  
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x, u, p

y, v, q

1

3

2

u1, p1

v1, q1

u3, p3

v3, q3

u2, p2

v2, q2

u4, p4

v4, q4

4

A

B

 

Figure 6-2 Four-noded linear rectangular element 

Since each of these vectors contains 8 components, the size of the element stiffness matrix, ke, is 88. 

The general procedure explained in Section 6.2 is employed here to calculate the stiffness matrix of the 4-

noded rectangular element. The node numbering and the Cartesian coordinate system shown in Figure 6-2 

are used here. The nodes are numbered in increasing order anti-clockwise. The coordinates of the nodes 1 

to 4 are (0, 0), (A, 0), (A, B) and (0, B). The coordinate system shown in Figure 6-2 is a local one so that 

the element stiffness matrix should be transformed to the global coordinate system before it can be 

assembled into the global stiffness matrix. 

 

1. Calculation of the shape function 

The variation of the displacement components, u and v, within the element can be expressed as 

complete linear polynomials of x and y: 

 

T

1 2 3 4

T

1 2 3 4

u(x,y) a a x a y a xy= (x,y)

v(x,y) b b x b y b xy= (x,y)

   

   

g a

g b
 (6.26) 

where  

    
T T

1 2 3 4(x,y) 1 x y xy , a  a  a  a g a  

and  

  
T

1 2 3 4b  b  b  bb  

The general displacements within the element are related to the nodal displacements using shape 

functions: 

 

T

1 1 2 2 3 3 4 4 e

T

1 1 2 2 3 3 4 4 e

u N u N u N u N u

v N v N v N v N v

    

    

N u

N v
 

 
T T 1(x,y) N g C  

with 
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1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

1 x y x y

1 x y x y

1 x y x y

1 x y x y

 
 
 
 
 
 

C  

Therefore the shape functions are: 

 

1

2 T 1

3

4

N 1 x/A y/B xy/AB

N x/A xy/AB
(x,y)

N xy/AB

N y/B xy/AB



     
   


     
   
   

  

N g C  (6.27) 

The equation above can now be written in matrix format as: 

 

1

1

2

1 2 3 4 2

e e

1 2 3 4 3

3

4

4

u

v

u

N 0 N 0 N 0 N 0u v
or (x,y)

0 N 0 N 0 N 0 Nv u

v

u

v

 
 
 
 
 

            
 
 
 
 
  

u N u  

 

2. Calculation of the B matrix  

The matrix Be can be obtained from Ne (equation above) as: 

 

1x 2x 3x 4x

e 1y 2y 3y 4y

1y 1x 2y 2x 3y 3x 4y 4x

N 0 N 0 N 0 N 0

0 N 0 N 0 N 0 N

N N N N N N N N

 
 

  
 
 

B  (6.28) 

where Nix, Niy are the derivatives of the shape functions with respect to x, and y, respectively. The 

derivatives of the shape functions for the 4-noded rectangular element can be obtained as: 

 

1x

1y

2x

2y

3x

3y

4x

4y

N 1/A y/AB

N 1/B x/AB

N 1/A y/AB

N x/AB

N y/AB

N x/AB

N y/AB

N 1/B x/AB

    
   

    
   
   

   
   
   
   
   
   

     

 (6.29) 

Therefore the matrix Be is obtained for the linear rectangular element as: 
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e

y 1 1 y y y
0 0 0 0

AB A A AB AB AB

x 1 x x 1 x
0 0 0 0

AB B AB AB B AB

x 1 y 1 x 1 y x y 1 x y

AB B AB A AB A AB AB AB B AB AB

 
   

 
    
 
 
      
  

B  (6.30) 

 

It can be seen that Be and therefore the strains within the element are a function of x and y. The 

normal strain εxx varies linearly with y but not with x, while εyy varies linearly with x but not with y.  

The shear strain varies linearly with x and y throughout the element, as can be seen from the form of 

the strain-displacement matrix, Be, in Eq. (6.30)  

 

 

 

3. Calculation of the stiffness matrix 

In general, for plane stress or plane strain problems, the matrix D can be written in the form of: 

 

11 12

12 22

33

d d 0

d d 0

0 0 d

 
 


 
  

D  (6.31) 

This leads to the equation for calculation of the element stiffness matrix in the local coordinate 

system. 

 T T

e e e e edV t dx dy

eV

  k B D B B D B  (6.32) 

whereby (t) is the thickness of the element.  

 

The product of T

e eB D B has to be evaluated first and the components of the resulting matrix have to 

be integrated over the area of the element. The final value of the stiffness matrix obtained from these 

calculations is given by: 

 

11 33 12 33 11 33 12 33 11 33 12 33 11 33 12 33

11 33 12 33 11 33 12 33 11 33 12 33 11 33

11 33 12

e

B A B A B A B A
4d 4d 3d 3d 4d 2d 3d 3d 2d 2d 3d 3d 2d 4d 3d 3d

A B A B A B A B

A B A B A B A B
4d 4d 3d 3d 2d 4d 3d 3d 2d 2d 3d 3d 4d 2d

B A B A B A B A

B A
4d 4d 3d

A B

t

12

           

          

  

k

33 11 33 12 33 11 33 12 33

11 33 12 33 11 33 12 33 11 33

11 33 12 33 11 33 12 33

11 33 12 33 11 33

B A B A
3d 2d 4d 3d 3d 2d 2d 3d 3d

A B A B

A B A B A B
4d 4d 3d 3d 4d 2d 3d 3d 2d 2d

B A B A B A

B A B A
4d 4d 3d 3d 4d 2d 3d 3d

A B A B

A B A B
Symmetric 4d 4d 3d 3d 2d 4d

B A B A

4

    

       

    

   

11 33 12 33

11 33

B A
d 4d 3d 3d

A B

A B
4d 4d

B A

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
 
  
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Now the stiffness matrix needs to be converted into the global coordinate system. We note here that this 

step was not required for triangular element, where we used the global coordinate system to calculate the 

matrix. Here we used a local coordinate system oriented with the rectangle. 

 

The transformation of the components of the stiffness matrix from the local coordinate system to the 

global system is given by 

 T

e e  k TK T  (6.33) 

where ke is the stiffness matrix in the global coordinate system and TT is the transformation matrix 

defined as: 

 

T

T

T

T

T

H 0 0 0

0 H 0 0
T

0 0 H 0

0 0 0 H

 
 
 
 
 
 

 

and 

 
   

   
T

cos θ sin θ
H

sin θ cos θ

 
  

 
 

And θ is the angle between the local coordinates and the global coordinates, as defined in 

Appendix B. 
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Problems 

Problem 2.1. Bar element 

This problem is about the calculation of the stiffness matrix and the load vector of the simplest element in 

Finite Element Modelling: the one-dimensional bar. The element consists of two nodes. The displacement 

along the node occurs in the direction connecting the two nodes only: 

 
 x1 x2 u2 u1 

Δx 
 

 

The displacement in any position of the node is given by 

          e e1

1 121 2

2

2

u
N N Nu x =u x + u x x (x)N

u
x

 
 





   N U

 
The shape functions are given by the figure below 

 

 

1 1 

x x1 x2 

N(x) 

1 

N1 N2 

0 
 

 

1)  Find the shape function Ni(x) as a function of x, x1, and x2 and then construct the row vector Ne

   1 2N N= x x  
e

N  

2)  Calculate 
d

=
dx

e
e N

B  

3)  Calculate the element stiffness matrix 
2

1

e eT e. E . .dx

x

x

 k B B  

4)  Calculate the load vector  
2

1

eT= x f(x)dx

x

x


e

NF  

5)  Write down the element matrix equation  e e e
k U F    

 

Problem 2.2. Element stiffness matrix of a second order 1D bar 

Calculate the element stiffness matrix of the 1D element with three nodes with a uniform load f along the 

element. 

 

 

L 

u1=0, x1=0 u2, x2=L/2 u3, x3=L 
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Problem 2.3. Beam element 

Solve the problem of cantilever beam of the figure below using this finite element solution with one 

element. Compare the deflection, bending moment, and shear force versus position, to the analytical 

solution of simple beam, and the numerical solution of strand7 using one beam element. Discuss the 

results. 

 

 

6 m 

0.7 m 

P= 10 kN 

Thickness=0.5m 

 
 

 

 

Problem 6.1. Finite Element Formulation using triangular elements 

Consider the plane strain triangular element for a 

displacement  field [u(x,y) v(x,y)]T (in meters) shown 

in the Figure. The Young Modulus is E=56MPa and 

the Poisson ratio is ν=0.4. 

 

Let  

(x1,y1) = (4,5)  m 

(x2,y2) = (0,5)  m 

(x3,y3) = (2,2.5)  m 

 

 

 

 

 

1) Derive the shape functions N1, N2, N3 using the matrices gT(x,y) and C 

2) Derive the Ne matrix 

3) Derive the Be matrix 

4) Derive the stress strain relation D  

5) Derive the element stiffness matrix ke 

 

Problem 6.2   

The data for a finite element analysis of a structure under plane strain conditions will be given to you. Use 

the information to calculate: 

 

(a) The global stiffness matrix. 

(b) The vector of applied nodal forces. 

(c) The vector of nodal displacements. 

(d) Displacements at the centroid of element 6 

 

x 

y 

(x3, y3, u3, v3) 

 

(x1, y1, u1, v1) 

 

(x2, y2, u2, v2) 
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(e) Strains at the centroid of element 6 

(f) Stresses at the centroid of element 6 

 

Problem 6.3. 

A deep cantilever beam is subjected to a uniformly distributed traction at its free end. The dimension of 

the beam is shown in the figure below, The Young's modulus, E (MN/m2), is equal to the sum of the 

numerals of your SID and the Poisson's ratio, is equal to the last two numerals in your SID divided by 

200. 

1) Calculate the maximum vertical deflection of the beam using the constant strain triangular finite 

elements. Use 2x6, 4x12 and 8x24 subdivisions to generate different finite element meshes to 

approximate the deflection of the beam. 

2) Compare the performances of the constant strain and the linear strain triangular finite elements on 

the basis of the number of nodes (or degrees-of-freedom) used in a finite element mesh. For 

example, use 1x3, 2x6, 4x12 and 8x24 subdivisions to generate finite element meshes of linear 

strain triangular elements and compare the results with those obtained in section 1.  

3) Comment on the distribution of stresses (in particular, normal stress, σxx, close to the beam 

support) predicted by the finite element analyses using different element types and different 

number of nodes. 

 

6 m

2 m

48 kN/m2

Thickness=1m
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CHAPTER 7: FINITE ELEMENT MODELLING OF SCALAR FIELDS 

 

  

FINITE ELEMENT MODELLING OF SCALAR FIELDS 

 

In the previous chapter we presented the finite element solution of vector fields. In these kinds of 

problems the variable we want to solve is a vector in the three-dimensional space. This vector usually 

corresponds to the displacement of the structure. In this chapter we will concentrate in scalar fields. For 

these problems the unknown variable is a scalar that can represent temperature, excess of pore pressure, 

hydraulic head, torsion, etc. Likely for us, all these problems share the same mathematical structure, and 

the corresponding governing equations are the so-called heat equation. We will formulate the heat 

equation in its strong and weak form and provide finite element solutions for static and transient 

problems. 

7.1 Formulation of heat equation 

Let us start with the strong formulation of a heat conduction problem. Here the unknown variable is the 

temperature, which is given in terms of the position. The kinematic equation corresponds to the 

temperature gradient, for 3D flow it is given by 

 
T T T

T= , ,
x y z

   
  

   
 (7.1) 

We are introducing here the nabla differential operator (nabla = arrow in Arabic) which is useful to 

formulate partial differential equations in complex form 

 T[ , , ]
x y z

  
 

  
  (7.2) 

The constitutive equation corresponds to the Fourier law, which states that the flow of heat is proportional 

to the gradient of temperature by a factor k that is the conductivity: 

 = k T q  (7.3) 

Then the balance equation corresponds to the principle of conservation of energy. In 1D, It states that the 

heat generated in an infinitesimal element Q(x)ΔxA equals to the heat that flow in the boundaries of the 

element A(q(x+Δx)  – q(x)), written in differential form for 3D flow:  

 
y Tx z

qq q
+ +  = Q(x,y,z)      Q

x y z

 
 

  
q =  (7.4) 

Putting all equation together we get the same equation as before 

 
T T T

k + k + k = Q(x,y,z)
x x y y z z

         
    

         
 (7.5) 

Similar equations are derived for seepage flow by changed temperature by hydraulic head, and Q(x) by 

the amount of water generated inside the elementary volume. In both case the fixed boundary condition 
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correspond to a fixed heat/temperature at the extreme, and the free boundary condition correspond to 

impermeable/isolated boundaries. 

 

Using the nabla operator in Eq.(7.2), the above equation can be simplified as: 

  T k T = Q(x)    (7.6) 

All problems that satisfy this differential equation are known as scalar problems, since the unknown 

variable “T” is a scalar. There is a wide range of scalar problems in engineering, such as heat flow, 

conductibility, pore pressure, and torsion. The most general form of the scalar problems is 

 
T ( T) Q=0  k  (7.7) 

where k is a matrix in the most general case. Since the unknown field T(x) of these problem is a scalar 

function, we will refer to these problems as scalar field. The Table 7-1 below shows a list of problems 

that can be solved using scalar field formulations. 

 

Table 7-1 Variables involved in the heat equation 

Field Problem Unknown (T) Material parameter (k) Known (Q) 

Heat Conduction Temperature Thermal conductivity Internal heat source 

Seepage flow Hydraulic head Permeability Zero 

Incompressible  flow Stream function Unity Twice the vorticity 

Elastic torsion Stress function (Shear Modulus)
- 1 Twice the rate of 

twist 

Electric conduction Voltage Electric  conductivity Zero 

Gas diffusion Concentration Diffusivity Zero 

Electrostatics Permittivity Charge density Zero 

Magnetostatics Magnetic potential Reluctivity Charge density 

Incompressible 

lubrication Pressure (Film  thickness )
3
/viscosity Lubricant supply 

7.2 Weak formulation of the heat equation 

We aim here to formulate the finite element equation of the heat equation. Let us assume that V is the 

domain of the problem. The conservation equation of the problem is 

 
T =Q   in  V      q  (7.8)  

The boundary of the domain is split as 1 2A=A A , where A1 is the part of the boundary with essential 

boundary conditions, and A2 is the boundary with free boundary conditions 

 
T T

1 2=Q   in  V     T = 0   in  A    and    =g( )    in  A q q n x  (7.9) 
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Figure 7-1 Domain of the heat equation problem 

 

The weak form of the governing equation is obtained by multiplying the equation by the test function 
*T ( )x and integrating over the domain 

 
* T *

V V
T ( ) dV T ( )Q( )dV  x q x x  (7.10) 

Now we use the following identity that corresponds to the derivative of a product in a high dimensional 

space 

 
T * * T * T(T ) T ( T )    q q q  (7.11) 

Replacing Eq. (7.11) into Eq. (7.10) we obtain 

 
T * * T *

V V V
(T )dV ( T ) dV T (x)Q(x)dV     q q  (7.12) 

Now we need to use the well-known divergence theorem in calculus. It states that for any continuously 

differentiable vector field f in a compact volume V with a piecewise smooth boundary A, we have 

 
T T

V A
dV dA  f f n  (7.13) 

Applying the divergence theorem to the first term of Eq.(7.12) with 
*Tf q we obtain 

 
* T * T *

A V V
T dA ( T ) dV T ( )Q( )dV    q n q x x  (7.14) 

This is the weak form of the heat equation 

7.3 Finite element formulation  

Now we start from the weak form Eq. (7.14) on an element with volume Ve as shown in Figure 7-1 

 
e e e

* T * T *

V A V
( T ) dV T dA T (x)Q(x)dV    q q n  (7.15) 

The scalar field T(x) is expressed in term of the values of the field at the nodes Te using the interpolation 

function 

 e eT  N T  (7.16) 

V

1A

2A

eV
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In the same way, the test function is expressed in terms of the nodal values using the interpolation 

functions 

 
* *

e eT  N T  (7.17) 

Replacing into equation above 

 

e 2

e e

T T T T

e e e e e

V V A

dV   QdV dA

e

   

k f

B kB T N N q n  (7.18) 

The Be matrix is given by 

 e eB N  (7.19) 

Eq. (7.19) corresponds to the finite element formulation of the scalar problem 

7.4 Boundary conditions 

There are two types of boundary conditions in the heat equation: The essential boundary conditions 

appear when the value of T is known in the boundary. In this case the temperature is specified at the 

nodes of the finite element model. This boundary condition appears when there is transference of energy 

between objects that are in physical contact. Thus this boundary condition is also known as heat 

conduction: 

 refT = T  (7.20) 

Here Tref  is the temperature of the environment. On the parts of the boundary where the temperature is not 

known explicitly, one of the following boundary conditions should be specified: 

 

Heat convection: this happened when the transfer of energy between an object and its environment is due 

to fluid motion 

  T

c refh T T q n  (7.21) 

Heat radiation: which is produced when the transfer of energy via electromagnetic radiation 

  T 4 4

r refσh T T q n  (7.22) 

Note that this boundary condition has a non-linear dependency with the temperature, and thus it requires 

non-linear analysis for numerical solution. 

7.5 Transient heat transfer analysis 

Here we will formulate the heat equation when the problem depends on time. In heat problems, this 

happened when the system is cooling or heating so that it is not in equilibrium with the environment.  The 

balance equation of this problem is nothing more that the law of conservation of energy. It states that the 

heat energy generated per unit of volume Q is equivalent to the time variation of the internal energy in the 

system U plus the heat flow 
T q  

 T U
Q

t


  


q  (7.23) 

The statistical mechanics tell us that the internal energy of a system is related with its density ρ and the 

specific heat c as 
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 U=ρcT  (7.24) 

Replacing this equation into Eq. (7.23) we obtain 

 T T
ρC Q

t


  


q  (7.25) 

The weak form can be formulated similar to the static analysis in the previous Chapter. First we multiply 

by the test function T* and then integrate over the domain, 

 

e e

T * *

V V

T
ρC T dV T dV

t
Q

 
    

 q  (7.26) 

Integrating by parts 

 

e e

T
* * *

V V

T
T qdV T ρC dV T QdV

t
E


          (7.27) 

and using the interpolation function to relate the field variable with its values at the modes 

 e eT = N T  (7.28) 

We derive the element matrix equation 

 

e e

e
e e e e

T T T

e e e e e e e e

V V V

d
+ρ     

dt

dV   dV    QdV

e

  

T
k T = f C

C = N N k = B kB f N
 (7.29) 

The transient heat solver solves this problem given the initial conditions, using a time sequence 

algorithm. 
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Problems 

 

Problem 7.1. Thermal load 

A glass window of an Australian house consists of a single layer 

of glass of 4 mm thick with thermal conductivity k =0.80 W/moC. 

Determine the temperature at the inside and outside surface of the 

glass and the steady rate of heat transfer (in W/m2) through the 

window. Assume that the inside temperature is 20o with 

coefficient of thermal convection hin= 10 W/m2 oC, and the outside 

temperature is T =0 o with hout = 30 W/ m2 oC 

 

 

 

 

 
 

Problem 7.2. Thermal load 2 

The Figure shows the cross section of a plate 

with temperature T(x) heated from the top with 

a solar radiation of 500 watts/m2 (watts=J/s). 

The thermal conductivity k=54 watts/m0C. The 

temperature is kept constant (T0=300C) at the 

left boundary, and the right boundary is 

insulated.   The length of the steel plate is 

L=2m, its wide is W=5m and its thickness is δ= 

0.01m 

 

 

1) Calculate the heat produced in the plate (Q) in watts/m3 

2) Derive the governing equations for the temperature in the steady state. Neglect heat loss at the bottom 

of the plate  

3) Find the analytical solution of the temperature in the steady state. 

4) Find the governing equations the temperature by assuming that the right boundary exchanges heat 

with the environment of Tr=100C with a convection coefficient of h=11 W/m2 C.   

5) Solve the governing equations of question 4. 

 

Problem 7.3. Thermal triangular element 

Consider the triangular element for a temperature field 

T(x) (in oC) shown in the figure. The conductivity is k=40 

W/(m oC). 

 

 

Let  

 

(x1,y1) = (2,1)  m 

(x2,y2) = (5,3)  m 

(x3,y3) = (3,4)  m 

 

 

 

 

o

inT =20

o

outT =0

1T

2T

 0T

L 

 

Isolated  

δ 

 

x 

y 

(x1, y1, T1) 

 

(x3, y3, T3) 

 

(x2, y2, T2) 
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1) Derive the shape functions 

2) Derive the B matrix 

3) Derive the element stiffness matrix ke 

 

Problem 7.4. Finite different solution of the transient heat equation 

Find the finite different equation of the heat Equation 

 
2

2

u u
c = F(x,t)

tx

 


 
 

 

Problem 7.5. Finite element solution of the transient heat equation 

Find the finite element solution of the transient heat equation 

 
2

2

u u
c = F(x,t)

tx

 


 
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CHAPTER 8: FINITE ELEMENT MODELLING OF STRUCTURAL PROBLEMS 

 

  

FINITE ELEMENT MODELLING OF STRUCTURAL 

PROBLEMS 

 

Structural mechanics is understood in this book as the theory of deflection of beam and plates. In 

principle, you can calculate the deformation of all the members of a structure by defining their 3D 

geometry and solving the displacement field using 3D solid finite elements. In practice, it is more 

convenient to reduce the dimensionality of some members and in this way reduce the complexity of the 

problem. A column of a building for example, can be reduced to a 1D element using beam theory.  In this 

case its full 3D displacement is replaced by its deflection, its curvature, and its torsion along its length. A 

concrete slab can also be considered as a two dimensional structure where in each point we define its 

deflection and its curvature radii. In this chapter we will focus in the calculation of deflection of beams 

and plates. 

8.1 Euler Bernoulli beam theory 

The Euler-Bernoulli beam theory is a simplification of the linear theory of elasticity used to calculate the 

deflection produced by applied loads. As any theory, it has a certain number of simplifications: 

 

(1) The loads are perpendicular only;  

(2) The deflection are small; and  

(3) Plane sections of the beam remain plane and perpendicular to the longitudinal axis.  

 

Derivation of the bending equation of the Euler-Bernoulli theory will be presented here. 

 

 

 x 

v(x) 

v(x+Δx) 

Δx 

y 

θ(x) 

 

 

 

M(x) 

M(x+Δx) 

Q(x) 

Q(x+Δx) 

W(x) 

 

Figure 8-1 Kinematic Variables (left) and free body diagram (right) of the Euler-Bernoulli beam. 

 

Kinematic equations 

The rotation of the infinitesimal element is related to the deflection at their edges (Figure 8-1) by: 

 
u(x+Δx) u(x) du

θ.=
Δx dx


  (8.1) 
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The derivation of this expression used the assumption that the rotations are small enough so that

θ sin tanθ  .  

 

Curvature is defined as the inverse of the radius of curvature ρ of the beam (Figure 8-1 ). The exact 

calculation of curvature is obtained from differential calculus: 

 

2 2

3/2
2

d u/dx1
κ= =

ρ 1+(du/dx)  

 (8.2) 

Since θ=du/dx is assumed to be much smaller than one, the curvature can be approximated to: 

 
2

2

d dθ
κ

dx dx

u
   (8.3) 

Thus we obtain the kinematic relation between deflection and curvature 

 
2

2

d u
κ= 

dx
 (8.4) 

 

Balance equation 

The free body diagram of the infinitesimal element is shown in Figure 8-1 . Q(x), M(x), W(x) represent 

the shear force, the moment, and the force per unit of length at point x.  For this problem we need to use 

both balance of forces and balance of moments. By balancing the forces in the y-direction we get 

 Q(x+Δx)  Q(x) + W x =0   (8.5) 

The above equation results into 

 
dQ

= W
dx

  (8.6) 

Now we use the balance of angular momentum   

 
Δx

Q(x)dx+M(x+Δx) M(x)+WΔx =0
2

   (8.7) 

The last term vanishes since it is a second order infinitesimal, and the resulting equation is 

 
dM

 = Q
dx

 (8.8) 

Eq. (8.6) and Eq. (8.8) can be combined to obtain the balance equation of the bending problem 

 
2

2

d M
= W

dx
  (8.9) 

 

Constitutive relation 

This is the relationship that connects moments to curvature. This relation can be obtained using elasticity 

theory as follows 
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2x

xx xx

A A A A A

Excluding Poisson 
effects

u d(θy) dθ
M= yσ da= yEε da yE da= yE da= E y da

x dx dx




      (8.10) 

In the first step we exclude Poisson effects and in the last one we assume that the the line normal to the 

misd-surface rotates an angle θ  after deformation. The moment of inertia of the cross section area is 

defined as 

 
2

A

I= y da                (8.11) 

 Replacing Eqs. (8.3) and (8.11) into Eq. (8.10)the constitutive relation can be written as: 

 M=E I κ  (8.12) 

Finally, if we combine the constitutive equation with the kinematics and the balance equations we obtain 

the governing equation of the problem: 

 

2 2

2 2

d d u
EI +W=0

dx dx

 
 
 

 (8.13) 

 

8.2 Calculation of the stiffness matrix of flexural beam elements 

The procedure explained in Section 2.4 is extended here to calculate the stiffness matrix of a flexural 

beam element. Beam elements are the basic members of rigid jointed frames. We will assume that you are 

familiar with beam theory. If not, you should study the Section 8.1 before reading this section. 

 

The beam element considered here has two nodes, a uniform cross-section A, and is loaded by forces and 

moments at each node as shown in Figure 2-4. The beam is assumed to be slender so that the effects of 

shear deformations can be ignored. The effects of axial forces and deformations are also ignored here. 

The sign conventions for the moments and the shear forces are shown in Figure 2-4.  

 

1 2

v2, q2v1, q1

L

2, M21, M1

x

y

 

Figure 8-2 Two-node beam element 

 

We summarize here the steps to construct the element matrix equation: 

1. Local coordinate and node numbering system 

The node numbering and coordinate system shown in Figure 2-4 may be used for the element where the 

y-axis is normal to the axis of the beam. The number of nodes is nne = 2, the number of degrees of 

freedom per node is dof = 2, that is a deflection normal to the beam axis, v, and a rotation about the z-axis, 

θ. Therefore the total number of degrees of freedom for the element is ndof=nnedof = 4. The nodal forces 
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associated with the rotation and deflection of the beam at each node are a moment about the z-axis, M, 

and a shear force in the y-direction, q.  The size of the displacement vector, ue, and the element force 

vector, fe, is 4 and the size of the element stiffness matrix, ke, is 44. 

 

11 12 13 141 1

21 22 23 241 1

31 32 33 342 2

41 42 43 442 2

k k k kq v

k k k kM θ

k k k kq v

k k k kM θ

    
    
    
    
    

    

 (8.14) 

 

2. Displacement function 

The variation of the transverse displacement can be approximated by a polynomial function. The 

polynomial function must contain one unknown coefficient for each degree of freedom: 

 
2 3

1 2 3 4

2 3 T

1 2 3 4

v(x) a a x a x a x

v(x) [1 x x x ] [a a a a ]

   


 (8.15) 

where a1 to a4 are the unknown coefficients. The rotation at any point can be expressed as θ=dv/dx, 

thus:  

 
2

2 3 4

2 T

1 2 3 4

θ(x) dv/dx a 2a x 3a x

θ(x) [0 1 2x 3x ][a a a a ]

   


 (8.16) 

Therefore the "displacements" at any point along the beam can be obtained from Eq. 

Error! Reference source not found.  and Eq. Error! Reference source not found.  as: 

 

1

2 3
2

2
3

4

a

av 1 x x x

aθ 0 1 2x 3x

a

 
 

            
 
 

 (8.17) 

The matrix f(x) and the vector a can be defined for the beam element by comparing 

Eq. Error! Reference source not found. with Eq. Error! Reference source not found.: 

  
v

T 2 3
TT

1 2 3 4T 2

(x) 1 x x x
(x) , a a a a

(x) 0 1 2x 3x

   
     
    

g
g a

g
 (8.18) 

 

3. Relate displacements within the element to the nodal displacements 

The general displacements within the element can be related to the nodal displacements using 

Eq. Error! Reference source not found..  

 T -1

ev( )  (x)  x g C u  (8.19) 

 
T

1

2 3T

2

2

1 0 0 0

0 1 0 0(x )

1 L L L(x )

0 1 2L 3L

 
 

 
   
  
 
 

g
C

g
 (8.20) 
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 1

2 2

3 2 3 2

1 0 0 0

0 1 0 0

3 2 3 1

L L L L

2 1 2 1

L L L L



 
 
 
 
 

  
   
 
 

 
 

C  (8.21) 

Thus the shape functions can then be calculated by: 

 T -1 2 3

2 2

3 2 3 2

1 0 0 0

0 1 0 0

-3 -2 3 -1(x) (x) 1 x x x
L L L L

2 1 -2 1

L L L L

 
 
 
       
 
 
  

N g C  (8.22) 

This results in 

 
3 2 3

2 3 2 2 3

2 3 2 2 3 2

3 2 2 x 3 2 x x
(x) 1 x + x , x x + , x x , +

L L L L L L L L

 
     
 

N  (8.23) 

 

4. Strain-displacement relationship: 

The "strains" ε(x)  at any point within the element can be related to the nodal displacements, ue based 

on Eq. Error! Reference source not found. 

 eε(x)    Bu  (8.24) 

The only strain that need to be considered is the curvature about the z-axis. For the beam considered here, 

all other strains such as shear strain and axial strain are assumed to be zero. The curvature at any point is 

defined as: ε(x)=–d2v/dx2. Therefore, the matrix B in Eq.Error! Reference source not found. is defined 

as: 

 θ

2 T 2 -1 -1[ d (x)/dx  ]   [0, 0, 2, 6x]      B g C C  (8.25) 

 
2 3 2 2 3 2

6 12x 4 6x 6 12x 2 6x
, , ,

L L L L L L L L

 
      
 

B  (8.26) 

 

5. Stress-strain relationship 

The “stress” for the beam element, which corresponds to the “strain” or curvature of the beam, is the 

internal moment. The moment at any point within the beam can be related to the curvature as: 

 

2

2

d v
M(x) EI

dx
   (8.27) 

Therefore, the stress-strain relationship is: 
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 e(x)  (x)    σ Dε EIBu  (8.28) 

 

6. Relate the internal stresses to the nodal loads 

Based on the principle of virtual work the stiffness matrix was obtained as: 

 T

e  dV k B DB  (8.29) 

 

L L

T T

e

0 0

 A dx EIA dx  k B EIB B B  (8.30) 

2 2 2 2

4 5 6 3 4 5 4 5 6 3 4 5

2 2 2 2

3 4 5 2 3 4 3 4 5 2 3 4

e 2 2

4 5 6 3 4 5 4 5

36 144x 144x 24 84x 72x 36 144x 144x 12 60x 72x

L L L L L L L L L L L L

24 84x 72x 16 48x 36x 24 84x 72x 8 36x 36x

L L L L L L L L L L L L
 AEI

36 144x 144x 24 84x 72x 36 144x 14

L L L L L L L L

        

        



       

k

L

2 2
0

6 3 4 5

2 2 2 2

3 4 5 2 3 4 3 4 5 2 3 4

dx
4x 12 60x 72x

L L L L

12 60x 72x 8 36x 36x 12 60x 72x 4 24x 36x

L L L L L L L L L L L L

 
 
 
 
 
 
 

   
 
 

         
 

  (8.31) 

Performing the integral in each element we get: 

 

3 2 3 2

2 2

e

3 2 3 2

2 2

12EI 6EI 12EI 6EI

L L L L

6EI 4EI 6EI 2EI

L L L L
 A

12EI 6EI 12EI 6EI

L L L L

6EI 2EI 6EI 4EI

L L L L

 
 

 
 
 

  
   
 
 

 
 

k  (8.32) 

The stiffness matrix of the beam element is symmetric, as expected. 

 

The final step is to calculate the nodal load vector assuming that the distributed load is constant along the 

beam, f(x)=w The nodal forces for the beam are given by: 

 
L

T

e

0

 = (x).f(x)dxf N  (8.33) 

Thus 
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2 3

2 3

2 2 23 2
2

L 2

e

2 30
2 3

2 3 2 2 2

3

L3 2 wL
L L+1 x + x

2L L 2

L 2L L2 x wL
+x x +

2 3 4L L 12
 =w dx=w =

3 2 L wL
x x L

L L 2 2

x x L L wL
+ +

L L 3 4 12

    
     

    
    


    
    
     
    
    
      

        

f  (8.34) 

The element matrix equation of the beam becomes  

 

3 2 3 2

2
1

2 2
1

2

3 2 3 2

2
2

2 2

12EI 6EI 12EI 6EI

2L L L L
v6EI 4EI 6EI 2EI

θL L L L 12
A

v12EI 6EI 12EI 6EI

L L L L 2θ

6EI 2EI 6EI 4EI

L L L L 12

wL

wL

wL

wL

  
   

                                
  
   
    

 (8.35) 

 

 

8.3 Plate bending theory 

Plate bending theory, as well as beam theory, is a degeneration of the 3D classical continuum theory. It is 

assumed that lines normal to the mid-surface of the plate before deformation remain straight and normal 

to the mid-surface after deformation. This assumption reduces the problem from 3D to 2D, but the 

rotation of the line involves additional degrees of freedom 

 

 

Figure 8-3 Formulation of the bending of a plate compressed by a loading force from the top. 
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The book of Timoshenko (Plates and Shells, McGraw-Hill) provides an excellent introduction to the 

theory of plates and shell. The book of Logan (first Course in the Finite Element Modelling, Cengage 

Learning) provides also a simple and detailed introduction. Here we just summarise the main concepts. 

 

We define a shell element (Figure 8-3) as a combination of a plate element and a plane stress element. 

The plane stress element can be deformed only in the parallel direction to the plate. The deformation of 

the plane stress is defined by u and v. Each point of the plate element has a perpendicular deflection w 

and two rotation x and y. We assume that the moments per unit length, Mx, and  My, are positive if the 

plate is compressed from the top. The curvature x and y are positive if the plate is convex downward. 

The thickness t, Young's modulus E and Poisson's ratio  of the plate are constant. The variable w is the 

transverse (z-direction) deflection of the plate mid-surface. 

 

Figure 8-4 The shell element is a combination of a plate element and a plane stress element 

 

The kinematic equation of the plate element corresponds to a 2D generalization of the beam theory in 

Section 8.1. The curvatures are defined by 

 
2 2 2

x y xy2 2

w w w
κ       κ       κ 2

x y xy

  
  
  

 (8.36) 

which can be written in the matrix form 

 

2

2

x 2

y 2

xy 2

κ

     κ  = w         w

κ

2

x

y

xy

 
 
  

  
      

   
 

  

κ L  (8.37) 

The constitutive equation comes from the elastic analysis of the plate. The final result is 

 

x x3

y y2

1
2xy xy

M 1 ν 0 κ
Et

M  ν 1 0 κ              
12(1 ν )

M 0 0 (1 ν) κ

    
    

      
        

M Dκ  (8.38) 
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The combination of the balance of linear and angular moment equation leads to 

 

2 22
xy Tx

2 2

M MM
+2 + = Q   =Q

x x y y

y 
 

   
L M  (8.39) 

 

8.4 Finite element formulation of plates 

We introduce here the rectangular plate bending element with 12 degrees of freedom as proposed by 

Melosh. This is one of the oldest and best known elements for analysis of plates. The plate, shown in 

Figure 8-5 has 4 nodes. At each node we have tree degrees of freedom: deflection w and rotations x and 

y.   

 

 

Figure 8-5 Melosh’s element with 4 nodes and 12 degrees of freedom 

 

In the finite element formulation, a quartic displacement function is chosen 

 

T

T 2 2 3 2 2 3 3 3

w=

=[1 x y x xy y x x y xy y x y xy ]

g a

g
 (8.40) 

Where x4, x2 y2 and y4 are missing from the complete quartic expansion. The terms x4 and y4 are removed 

to avoid discotinuity in the displacement at the boundaries with the element. The term x2 y2 is alone and 

cannot paired with any other terms so that is rejected. We substitute Eq. (8.40) into the nodal coordinates 

to obtain 
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2 3

2 3

2

2 2 3 2 2 3 3 3

2 2 3 2

2 2 2 3

2 3

2

1 0 0 0 0 0 0 0 0 0 0 0

0 0 -1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

1 a 0 a 0 0 a 0 0 0 0 0

0 0 -1 0 -a 0 0 -a 0 0 -a 0

0 1 0 2a 0 0 3a 0 0 0 0 0
=

1 a b a ab b a a b ab b a b ab

0 0 -1 0 -a -2b 0 -a -2ab -3b -a -3ab

0 1 0 2a b 0 3a 2ab b 0 3a b b

1 0 b 0 0 b 0 0 0 b 0 0

0 0 -1 0 0 -2b 0 0 0 -3b 0 0

ew = Ca

C

2 30 1 0 0 b 0 0 0 b 0 0 b

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (8.41) 

 

Inverting the C matrix 

 

2 2

2 2

-1
3 2 3 2

2 2 2 2

2 2 2 2

1 0 0 0 0 0 0 0 0 0 0 0

0 0 -1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

3 2 3 1
- 0 0 0 0 0 0 0 0

a a a a

1 1 1 1 1 1 1 1
- - 0 - 0 0 0 -

ab a b ab a ab ab b

3 2 3 1
- - 0 0 0 0 0 0 0 - 0

b b b b

2 1 2 1
0 - - 0 - 0 0 0 0 0 0= a a a a

3 2 3 1 3 1 3 2
0 - - 0 - 0 - 0

a b ab a b ab a b ab a b ab

3 2 3 2 3 1 3
0 - - 0 - 0 -

ab ab ab ab ab ab ab

C

3 2 3 2

3 2 3 2 3 2 3 2

3 2 3 2 3 2 3 2

1
0

ab

2 1 2 1
0 0 0 0 0 0 0 - 0

b b b b

2 1 2 1 2 1 2 1
- 0 0 - 0 - 0 -

a b a b a b a b a b a b a b a b

2 1 2 1 -2 1 2 1
- - 0 0 0 - 0

ab ab ab ab ab ab ab ab

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(8.42) 

 

The stiffness matrix is calculating using the operator T -1

e e= = { }B LN L g C  , where L is given by Eq. (8.37) 
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2

2

      = 

2

x

y

xy

 
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 

 
 
 

 
 

  

L  (8.43) 

The stiffness matrix becomes 

 

e

a b

T -1 T T -1

e e e

V 0 0

= dV=t ( { (x,y)}. ) ( { (x,y)} )dxdy  
Tk B DB L g C D L g C  (8.44) 

 
3

1 1

e 2

0 0

0 0 0

0 0 0

0 0 0
1 0 0 0 0 2 . . .

2 0 0
{ 1 0 0 0 0 0 . . . }

. . .12(1 )
1 0 0 0 0 . . .

0 0. . .
2

. . .

. . .

T
a b

Et
C dxdy C








 

 
 
 

  
    

          
      
    

 
 
  

 k  (8.45) 

The rest of the steps, including assembling the global matrix equation, applying boundary conditions, and 

constructing the load vector, follow the standard procedures in previous chapters. In our formulation we 

assume that the shell can be described as a superposition of a plate element and a plane strain element. 

Numerous other shell elements have been developed over the years. In some formulations, it is assumed 

that each element of the shell has six degrees of freedom u, v, w, x, y and z. The last one is the so-

called drilling degree of freedom. An artificially stiffness is incorporated to this fictitious degrees of 

freedom, leading to a formulation that is interesting form the theoretical and practical point of view. 
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Problems 

 

Problem 8.1. Structural mechanics: bending of beams 

A beam fully supported at its two ends has dimensions 2.5m x 0.25m x 0.12m.  The material properties 

are: Young’s modulus: 30,000MPa, Poisson’s ratio 0.2, and density 2,400kg/m3. The load is a 

combination of the dead load (self-weight) and the live load. The later consists of a load of 1 kN/m 

distributed along the beam.  

 

 

 

w =1kN/ m 

0.25m 

2.5m 

 
 

a) Solve the deflection along the beam using simple bending theory.  

b)  Will the finite element solution with one beam element give the exact solution? Justify your response 

 

Problem 8.2. Structural Mechanics: bending of cantilever beams 

A cantilever beam has dimensions 2.5m, height 0.25m and thickness (out of plane) 0.12m. The material 

properties are: Young’s modulus: 30,000MPa, Poisson’s ratio 0.2, and density 2,400kg/m3. The load is a 

combination of the dead load (self-weight) and the live load. The latter one is a concentrated load at the 

tip of 4kN.  

 
 

2.5 m 

P= 4 kN 

Thickness=0.12m 
0.25 m 

 
 

1) Write the governing equations of the problem  

2) Find the analytical solution of the governing equations  

3) Using the analytical solution to plot the deflection, bending moment, and shear force versus position  
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Problem 8.3. Rotational stiffness of bended beams 

The figure below shows the end rotations and the end moments of a beam, along to its total deflection Δ. 

Solve the equilibrium equation of the beam to obtain a solution for the rotations 1θ   and 2θ  in terms of the 

end moments 1M , 2M  and the deflection Δ. 

 

1 
2 

L 
2, M2 

1, M1 

Δ 

 

 

 

Problem 8.4. Frame buckling using beam elements 

This problem is related to the buckling of a plane frame that has beam and column lengths each of L, 

pinned at the column bases and fixed against vertical deflection (only) at the 2 extreme beam ends. The 

loading consists of an equal downward load of P at the top of each column.  The beams have an area A, 

moment of inertia I, Young modulus E, and Poisson ration.  The first (sideway) and second (symmetric) 

buckling modes are shown in the following figures. 

 

 
(a) First mode of buckling (sideway) 

 
(b) Second mode of buckling (symmetric) 

 

 

1. Find the critical buckling load as a function of E, I, L, and the buckling factor k. 

2. For the sway mode, find the rotational stiffness of the top node of the vertical column, the rotational 

stiffness of the node is defined by A

A

   where /M   is the stiffness of any adjacent 

member connected to the end of the compression member. The same definition applies to node B.  

3. Find the buckling factor of the sway mode using the equation provided below 

4. For the symmetric mode, find the rotational stiffness of the top node of the vertical column. 

5. Find the buckling factor of the symmetric mode  

Hint for the use of the Newton-Raphson method:

2(cot ) cos
d

x ec x
dx

 
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CHAPTER 9: ACCURACY AND EFFICIENCY IN FINITE ELEMENT MODELLING 

 

  

ACCURACY AND EFFICIENCY IN FINITE ELEMENT 

MODELLING 

 

In this chapter we will introduce the isoparametric formulation. This is probably the most important 

contribution to the field of finite element analysis during the past 40 years. It includes higher-order 

elements of arbitrary shape (included curved shapes) that are relatively easy to implement into a computer 

program. The isoparametric formulation is actually used in most commercial packages. The term 

isoparametric (same parameters) is derived from the use of the same interpolation functions to define the 

element’s geometric shape as are used to define the displacements within the element. In this chapter, we 

introduce the basics of this formulation and its implication in accuracy in modelling. 

9.1 Accuracy and efficiency of linear triangular elements  

The linear element is the basic planar element and one of the first elements developed and used in 

practice. As noted previously, the strains and stresses are constant over the entire area of one element. 

Therefore a high degree of mesh refinement is required where significant strain gradients exist.  

 

Consider two constant strain triangular finite elements shown in Figure 9-1. Assume that only one node of 

element b is displaced while other nodes are fixed. Then element b is subjected to non-zero strains and 

stresses, which are constant over the area of the element, while strains and stresses within element “a” are 

all zero. An infinitesimal element at the boundary of the two finite elements, the shaded area in Figure 

9-1, is not in equilibrium. There are obviously discontinuities in strains and stresses at the boundary of the 

two elements. In view of this fact, it is necessary to use a fine mesh of these elements where high stress or 

strain gradients are expected.  

 

ba

,  0,  =0

 

Figure 9-1 Discontinuity of stress and strain 

 

The linear triangular element has the advantages of simplicity in its formulation. The strain-displacement 

matrix B is independent of the coordinates. Therefore, the integration of the stiffness matrix 
T dVB DB  

imposes no difficulty. The main limitation is in accuracy that can be overcome using high-order, 

isoparametric elements. 
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9.2 Higher order triangular elements  

Higher order elements have more degrees-of-freedom and usually give a more accurate representation of 

the actual behaviour. Application of these elements ensures more accurate solutions to be achieved with 

fewer elements.  

 

It was shown in the previous section that the constant strain triangular element has a certain disadvantage, 

particularly in regions of high stress gradients. One method of dealing with this problem is to use a very 

fine mesh while still using the basic linear elements. However, an alternative approach is to use higher 

order elements, elements for which higher order polynomials are used to approximate their displacement 

functions. This can be done by specifying additional nodes for the elements, thus giving it more degrees-

of-freedom. The resulting elements have the advantage that fewer of them are required to achieve certain 

accuracy. This is at the expense of greater computational complexity that can be easily handled in modern 

computers. 

 

Some of the higher-order triangular elements are shown in Table 9-1 together with the interpolation 

functions used to derive the stiffness matrices of the elements. 

 

Table 9-1 Planar triangular element types 

Shape 

    

Name of 

the 

Element 

T3 T6 T9 T10 

Shape 

function 
Linear Parabolic 

Cubic 

(Non-standard) 

Cubic 

(Standard) 

 

 

There are substantial advantages on using high-order element in finite element modelling Consider for 

example the problem of a plate with a hole, See Figure 9-2. If one uses T3 elements, the hole is 

approximated by a polygon, which produced a substantial error in the modelling of the boundary.  The T6 

element offers a great improvement in the representation of the boundary. This is because the 

isoparametric formulation will fit a parabola passing to the three nodes of each side of the T6 element. As 

a result of that, the circular hole will be replaced to a spline curve (piecewise curve consisting of 

parabolas) which corresponds to an excellent approximation of the circular hole. 
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Figure 9-2  Mesh representation of a plate with a hole: from left to right: Plate with a hole, mesh using T3 

elements, and mesh using T6 elements 

 

9.3 Accuracy and efficiency of linear rectangular elements  

The linear 4-noded element is the simplest rectangular element for planar analysis. The normal stress and 

strain in the x direction, σxx and εxx, vary linearly with y within the element and the normal stress and 

strain in the y direction, σyy and εyy, vary linearly with x. Because the variation of strains and stresses are 

not restricted to a uniform value over the whole element, the linear rectangular element is generally more 

efficient and slightly more accurate than the basic linear 3-noded triangular element, although it is less 

adaptable to bodies with a complex geometry. The triangular element has the advantage that it can be 

used for bodies with irregular boundary shapes and its formulation is simpler than the 4-noded rectangular 

element. Both the 4-noded rectangular element and the 3-noded triangular element were developed based 

on the assumption that the displacements vary linearly within the elements and thus at element edges. It 

follows that these two types of element can be connected to one another without any loss of compatibility 

and can be combined together to model a finite element mesh with a complex geometry in a planar 

analysis.  

 

The 4-noded rectangular element has shown some deficiencies in finite element analyses. For example, it 

is unable to represent accurately one of the most commonly occurring stress states, i.e., the state of 

bending stress. This can be illustrated by subjecting a simple rectangular planar element to a pure bending 

stress as shown in Figure 9-3. The top and bottom edges of the finite element remain straight under pure 

bending moment. The approximation of the state of pure bending by the finite element, results in a fictitious 

prediction of relatively large shear strains.  

 

The unwanted shear strain causes the behaviour of the finite element to be too stiff. The effect of the 

unwanted shear strain becomes significant for elements with large aspect ratio (a/b). 
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Exact Displacement 

M M 

Finite Element Displacement 

M  M 

Pure Bending Stress 

a 

b 
x 

 y 

 

Figure 9-3 Deformation under pure bending 

 

A large number of these elements have to be used in order to achieve an acceptable accuracy in problems 

where bending action is important or where a high stress gradient is expected. The use of a greater 

number of elements in a finite element analysis usually means a longer computation time. Therefore, it is 

desirable to use higher order elements in many practical analyses. 

9.4 High order rectangular elements  

Higher order elements have more degrees-of-freedom and usually represent a more accurate displacement 

field, and therefore stress and strain field. Application of fewer elements of this kind in a finite element 

analysis usually results in a more accurate solution compared with the results of an analysis obtained 

using lower order elements. 

 

To develop higher order elements, higher order polynomials are required in order to approximate 

displacement functions for the elements. This requires additional nodes which results in more degrees-of-

freedom for the elements. Some of the higher order rectangular elements are shown in Table 9-2. The 

functions used to interpolate the displacements of these elements are usually of the same order in the x 

and y directions. However, this is not a strict requirement in developing the higher order elements, since it 

is trivial to generate shape functions for rectangular elements using a different order of interpolation in 

the x direction to that used in the y direction. This will result in a series of elements which have different 

numbers of nodal points in the x direction to those in the y direction.  

 

It should be noted that as the number of nodes in a finite element increases, calculation of the stiffness 

matrix of the element becomes more complex. Some of the complexities arise from the parametric 

multiplication of large matrices and the high number of integration operations. It is also possible increase 

the accuracy of an element without increasing the nodes. For example, some commercial packages 

modify the four nodes Q4 element to improve the performance. The modification consists in introducing 

an additional bubble shape function that considerably decreases the numerical error during bending. As 

user of commercial packages, you should be aware that there are many improvements of the formulation 

that affect the calculations, and whose details are hidden to the user. 
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Table 9-2 Higher order rectangular elements 

Shape 

    
Name of the 

element 
Q8 Q9 Q12 Q16 

Disp. function in 

x/y direction 

Parabolic 

(Non-standard) 

Parabolic 

(Standard) 

Cubic 

(Non-standard) 
Cubic (Standard) 

9.5 Coordinate transformation and numerical integration  

The derivation of the stiffness matrix for any high-order element requires integrations of a high number of 

functions over the area of the element. As the order of the interpolation function for the element increases, 

integration operations become more complex if they are to be performed analytically. However, analytical 

integrations may be avoided using coordinate transformation and numerical integration. One of the 

advantages of numerical integration, as opposed to analytical integration, is that it can all be carried out 

by the computer. Elements with curved boundaries, or non-rectangular quadrilateral elements can also be 

easily developed and their stiffness matrices can be integrated without additional difficulty. 

 

Summary of numerical integration 

The term "Quadrature" is the name applied to evaluating an integral numerically rather than analytically. 

There are a number of methods available for numerical integration. However, the Gauss quadrature rule is 

the one most often used in finite element analyses and is therefore introduced here.  

 

Gauss quadrature rules are written for a finite integral over the interval [  1, 1] in each coordinate 

direction. Integration of a function, f(η) in one dimension is expressed as: 

    
1 n

i i

i 11

f η dη f η w


  (9.1) 

where n is the number of integration points (or Gauss points) selected for the integration, ηi is the 

coordinate for Gauss point i, and wi is the weight for Gauss points. The coordinates of the Gauss points 

and their weights are well known and some are given in Table 9-3 for various orders of numerical 

integration.  

 

Table 9-3 Gauss points and weights for one-dimensional integration 

Number of 

Gauss points, n 

Coordinate 

ηi 

Weight 

wi 

1 0 2 

2 
+1/ 3  

1/ 3  

1 

1 

3 

0.6  
0 

 0.6  

5/9 

8/9 

5/9 
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The Gauss quadrature rules are designed for cases where f(η) is a polynomial. A rule with n Gauss points 

is exact for a one-dimensional polynomial integrand of degree up to 2n-1. For example, an integral with 2 

Gauss points gives no error for linear, parabolic and cubic polynomials. Gauss quadrature rules may also 

be used for cases where the integrand is not a polynomial, but the result will only be an approximate one. 

 

Integration of a function, f(η,μ) in two dimensions over the area of a quadrilateral, i.e. over the interval 

[1,1]   for both η and μ, can be expressed as: 

    
1 1 n

i i i

i 11 1

f η,μ dη dμ f η ,μ w
 

   (9.2) 

where η i and μ i are the coordinates for Gauss point i. The coordinates of the Gauss points and their 

weights for two dimensions are given in Table 9-4. The two-dimensional quadrature rules are a simple 

generalization of the one-dimensional rules where f(η, μ) is a polynomial. A rule with n Gauss points is 

exact for a two-dimensional polynomial integrand of degree up to 2 1n  . For example, a one-Gauss 

point rule is valid for a constant or linear function, a 4-Gauss point rule gives no integration error for a 

polynomial up to and including a cubic.  

 

Table 9-4 Gauss points and weights for two-dimensional integration 

Number of 

Gauss points, n 

Coordinate 

ηi 

Coordinate 

i 

Weight 

wi 

1 0 0 4 

4 

1/ 3  

+1/ 3  

1/ 3  

+1/ 3  

1/ 3  
1/ 3  

+1/ 3  

+1/ 3  

1 

1 

1 

1 

9 

 0.6  

0 

+ 0.6  

 0.6  

+0 

+ 0.6  

 0.6  

0 

+ 0.6  

 0.6  

 0.6  

 0.6  

0 

0 

0 

+ 0.6  

+ 0.6  

+ 0.6  

25/81 

40/81 

25/81 

40/81 

64/81 

40/81 

25/81 

40/81 

25/81 

 

Integration schemes for two-dimensional triangular elements can be found in most of the finite element 

textbooks. It is recommended that an integration rule with 3 Gauss points is used for all triangular 

elements and an integration rule with at least 4 Gauss points is used for quadrilateral elements.  

 

Natural coordinates 

In order to evaluate an integral over the area or volume of an arbitrary-oriented element, it is necessary to 

transform the coordinates, as shown the Figure 9-4. In this procedure it is convenient to introduce a 
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system of natural coordinates. A model element is chosen in the interval of [1,1] in each direction, so 

that all of the integrations required to form the element stiffness matrix can be performed using a 

quadrature rule. Then the real finite element, in the coordinate system x and y, can be mapped onto the 

model element, in the natural coordinate system, using a standard transformation.  

 

 
 

Figure 9-4 Finite element in the natural coordinates (left) and in the Cartesian coordinates (right) the 

elements  shown are: Q4,Q9, T3, and T6. 

 

To transform the variables and the region with respect to which the integration is made a standard process 

in integral calculus will be used which involves the determinant of the Jacobian matrix, detJ. For example 

The integration of a function f over the volume eV  of the element e becomes: 

 

e

1 1 1

V 1 1 1

f(x,y,z)dx dy dz f(η, μ,ζ)det dη dμ dζ
  

    J  (9.3) 

where η, μ and ζ are the natural coordinates corresponding to the actual coordinates of x, y and z, and the 

Jacobian matrix is calculated as 
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x y z

η η η

x y z

μ μ μ

x x x

ζ ζ ζ

   
 
  
 
   

  
  
 
   
 
   

J  (9.4) 

 

One-Dimensional Elements 

Consider a linear 2-noded bar element shown in Figure 9-5-a. A model element of this kind can be 

defined in the natural coordinate η, as shown in Figure 9-5-b. The coordinate of the model element in the 

natural coordinate is chosen to range from 1 to +1. Therefore numerical integration rules can be easily 

applied.  

 

 

 

x=x1                                            x=x2 

1                                       2 1                                       2 

= -1                                         =+1 

 x 

a- Real element b- Model element 
 

Figure 9-5 Real and model linear one-dimensional elements  

 

The shape functions associated with the nodes of the model element can be defined as: 

 
1

2

N (1 η) / 2

N (1 η) / 2

 

 
 (9.5) 

The displacement at any point within the element can be obtained using the shape functions and the nodal 

displacements at nodes 1 and 2, u1 and u2 respectively. 

      1 1 2 2u η N η U N η U   (9.6) 

The shape functions can also be used to find the x-coordinate of a point within the element, if the element 

is iso-parametric. The x-coordinate associated with a point within the model element can be obtained in a 

similar form to the displacements: 

      1 1 2 2x η N η x N η x   (9.7) 

where  
T

1 2x x , x . For example, if x1 = 11m and x2 = 17.5m, the centre of the real bar element, which 

corresponds to the centre of the model element at η=0, can be calculated as: 

 
1(η 0)

2(η 0)

N 1 / 2

N 1 / 2








 

 (η 0) 1(η 0) 1 2(η 0) 2x N x N x 1/2 11 1/2 17.5 14.25m          

In calculation of the stiffness matrix of the element, it is necessary to find the strain-displacement matrix, 

Be, and hence the derivatives of the shape functions with respect to real coordinate x, i.e 
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 1 2
e

N N

x x

  
    

B  (9.8) 

Since the shape functions are defined in terms of the model coordinate, η, the derivatives of the shape 

functions can be found using the chain rule: 

  1 1N N η η 1 1
(1 η)/2

x η x η x 2 x/ η

    
   

      
 (9.9) 

  2 2N N η η 1 1
(1 η)/2

x η x η x 2 x/ η

    
   

      
 (9.10) 

The quantity x/η is the 1D  version of the Jacobian matrix, J, and relates the derivatives of the shape 

functions with respect to the two coordinate systems, i.e.,  

 
1i i i iN N N N

J or J
η x x η

   
 

   
 

The Jacobian can be found by differentiating Eq. (9.7): 

 
1 11 2 1 2

1 2

2 2

x xN N N Nx 1 1
J x x , , L/2

x xη η η η η 2 2

         
                       

 (9.11) 

where L is the length of the bar element. 

 

Substituting the value of x/η from Eq. (9.11) into Eq. (9.9) and Eq. (9.10), results in the derivatives of 

the shape functions with respect to the real coordinate x and can be used to form the strain-displacement 

matrix Be: 

 
11 2 1 2

e

N N N N 1 1 2 1 1
, , J , ,

x x η η 2 2 L L L

         
                     

B  (9.12) 

The equation for calculation of the stiffness matrix can now be written in terms of the natural coordinate 

η. 

 
2

1

x 1 n
T T T

e e e e e ei ei i

i 1x 1

A dx A det dη A det w





    k B D B B D B J B D B J  (9.13) 

where Bei is the matrix Be evaluated at Gauss point i. A one Gauss point integration rule, n=1, can be 

selected for the numerical integration. The weight for the Gauss point is obtained from Table 9-3 as w=2. 

Then the stiffness matrix is calculated as: 

  
1

e

i 1

1/L 1 1L EA
A .E. 1/L 1/L .2

1/L 1 12 L

    
     

   
k  (9.14) 

 

Two-Dimensional Elements 

A linear quadrilateral 4-noded planar element (Q4) is shown in Figure 9-6-a. A model element of this 

kind can be defined in the natural coordinate system (η,μ), as shown in Figure 9-6-b. The coordinates of 

the model element in the natural system are chosen to range from -1 to +1 in both directions.  
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1(-1,-1) 2(1,-1) 

3(1,1) 4(-1,1) 

1(x1,y1) 

a- Real element b- Model element 

2(x2,y2) 

3(x3,y3) 

4(x4,y4) 

x 

y 

 

 

 

Figure 9-6 Real and model linear quadrilateral elements 

 

The shape functions associated with the nodes of the model element can be defined as: 

 

1

2

3

4

N (1 η)(1 μ)/4

N (1 η)(1 μ)/4

N (1 η)(1 μ)/4

N (1 η)(1 μ)/4

  

  

  

  

 (9.15) 

A point in the real element, with real coordinates x and y, can be associated with a point in the model 

element, with natural coordinates η and μ. The real coordinates of the point can then be obtained using the 

shape functions and the natural coordinates of the point: 

   T

1 1 2 2 3 3 4 4x η,μ N x N x N x N x     N x  (9.16) 

   T

1 1 2 2 3 3 4 4y η,μ N y N y N y N y     N y  (9.17) 

where  
T

1 2 3 4x x  x  x  x and  
T

1 2 3 4y y  y  y  y are vectors of the nodal coordinates in the x and y 

directions, respectively.  

 

The formation of the strain-displacement matrix, Be, requires the derivatives of the shape functions with 

respect to the real coordinates x and y:  

 
1 1i i i iN N N N

J and J
x η y μ

    
 

   
 

It is therefore necessary to define the Jacobian matrix for two-dimensional cases: 

 
x/ η y/ η

x/ μ y/ μ

    
  

    
J  (9.18) 

The determinant of the Jacobian matrix is: 

 
x y x y

det
η μ μ η

   
 
   

J  (9.19) 

where the components of the Jacobian matrix can be calculated by differentiating Eq. (9.16) and Eq. 

(9.17): 
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4
31 2 4 i

1 2 3 4 i

i 1

4
31 2 4 i

1 2 3 4 i

i 1

4
31 2 4 i

1 2 3 4 i

i 1

4
31 2 4 i

1 2 3 4 i

i 1

NN N N Nx
x x x x x

η η η η η η

NN N N Nx
x x x x x

μ μ μ μ μ μ

NN N N Ny
y y y y y

η η η η η η

NN N N Ny
y y y y y

μ μ μ μ μ μ









   
    

     

   
    

     

   
    

     

   
    

     









 (9.20) 

By substituting the derivatives of the shape functions with respect to η and μ into the relations given 

by  Eq.(9.20), the components of the Jacobian matrix and hence its determinant can be obtained.  

 

4 4
i i

i i

i 1 i 1

4 4
i i

i i

i 1 i 1

N N
x y

η η
J

N N
x y

μ μ

 

 

  
  
 
  
 

  

 

 
 

For the general case of an arbitrary-oriented quadrilateral, detJ is a polynomial function of η and μ. 

Therefore, the value of detJ varies within the quadrilateral element and needs to be determined at 

individual Gauss points.  

 

The procedure of integration to form the element stiffness matrix ke, can now be carried out with respect 

to the natural coordinates, η and μ.  

 

1 1

T T

e e e e e

y x 1 1

t dx dy t det dη dμ

 

 

    k B D B B D B J  

The integration can then be carried out using a quadrature rule. 

 

1 1 n
T T

e e e,i e,i i i

i 11 1

t det dη dμ t det w

 

 

  B DB J B DB J  

Note that the stress eσ DBu  in the quadrilateral element is not constant within the element; it is a 

polynomial function of η and μ so that it varies within the element. In most commercial codes, the stress 

is evaluated only in Gauss points using the matrices e,iB  used for the numerical calculation of ek . The 

stress in any other point is calculated by extrapolating the values from the Gauss points.  In is therefore a 

good practice to assume that the stresses at the Gauss points are approximated, and that the error increases 

as the point departs from the Gauss points. 

9.6 Numerical error in the isoparametric formulation  

The finite element solution provides only an approximate solution of the problem.  Let say that ( )exactu x  

is the exact solution, (which is not always available due to mathematical complexity), and num ( )u x  the 

numerical solution of the finite element analysis. The numerical error of the finite element approximation 

is defined as  

 
exact numerror( ) = ( ) ( )x u x u x  
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Since the isoparametric formulation involves few approximations, there is a numerical error that you need 

to be aware when taking conclusions from the numerical results.  From this numerical error we can 

distinguish three different sources:  

 

1. Domain approximation error, due to approximation of the boundary of the domain by a linear 

(T3,Q4), quadratic (T6, Q8), or higher order polynomials.  

2. Approximation error, due to approximation of the solution by piecewise polynomials (shape 

functions). This error is decreased when the order of the element is higher. 

3. Computational error, due to the use of quadratures in the calculation of the integrals to evaluate 

the stiffness matrix and the load vectors.  

 

Figure 9-2 shows an example of the domain approximation error: the mesh with T3 elements approximate 

the circular boundary by a polygon, leading to a large domain approximation error. Replacing the element 

from T3 to T6 leads to a considerable decrease of this error, since the circular boundary is well 

approximated by a spline curve. The advantage of the use of higher-order elements is that curved 

boundaries of irregularly shaped bodies can be approximated more closely than by the use of simple 

straight-sided linear elements. 

 

The approximation error, due to approximation of the solution by piecewise polynomials (shape 

functions), can be decreased when the order of the element is higher. In general, higher-order element 

shape functions can be developed by adding additional nodes to the sides of the linear element.  These 

elements result in higher-order strain variations within each element, and convergence to the exact 

solution thus occurs at a faster rate using fewer elements.  

 

The computational error, resulting from approximating the integral by quadratures, is produced by the 

coordinate transformation from the actual element to the natural element. Elements that are heavily 

distorted from its natural element usually produce large computational error. Some finite element codes 

allow measuring this distortion by using a normalized Jacobian eJ  which ranged from one for perfectly 

shaped element to 0 for heavily distorted element. As finite element user, you should avoid element 

whose normalized Jacobian is too small. The Figure 9-7 below, for example shows two different meshes 

of a circular area. The left one has very elongated element at the centre that produces large computational 

error. In the right one the elements are close to squares, which minimized the numerical error of the 

calculation of stiffness matrix. 

 

 

Figure 9-7 Real and model linear quadrilateral elements. The arrow at the left figure shows one of the 

heavily distorted elements. 
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Basically the quality of the mesh will define the accuracy of the finite element calculation. The mesh can 

be coarse (have few elements) or refined (have many elements).  It is not a general rule that refining the 

mesh will reduce the numerical error, and in some cases it is better to increase the order of the elements.  

Refining a region of the domain can be dangerous, since it can lead to incompatibilities: it means, nodes 

in one element that are not connected to the neighbour element. In these cases we observe spurious 

discontinuities in the finite element solutions. To avoid discontinuities, it is recommended to use 

transition elements that connect the coarse region with the refined one, see Figure 9-8. 

 

 

Figure 9-8 Transition elements using Q4 elements allow to connect a coarse mesh (top) with a fine one 

(bottom)  

 

The way we impose boundary conditions can also lead to sources of errors. Stress singularities appear 

when a load is concentrated in a single node, and it is recommended to distribute the load in few nodes 

before mesh refining. Finally, unrealistic concentration of stresses can appear in corners of the mesh and 

it may be necessary to smooth the boundaries or the boundary conditions to reduce the numerical error.  
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Problems 

 

Problem 9.1. Isoparametric formulation of high-order 1D element 

Derive the shape functions of the thermally 

loaded, master, one-dimensional element with 

three nodes and a scalar variable T() 

 

 

Problem 9.2. Numerical error in isoparametric formulation 

A mesh of T3 elements are proposed for calculation of the stress in a plate with a hole. Discuss the three 

possible causes of numerical error in the finite element analysis using this mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 9.3. Thin plate with a hole 

For the finite element analysis of the plate with a hole, three different meshes are generated, see Figure 2. 

The symmetry has been considered and thus only a quarter of the model is needed. All the elements are 

Quad8. 

 
 

 

E=200,000 MPa 

=0.3 

1.0 MPa 1.0 MPa 

800 mm 

40 mm 

400 mm 

 

-1 1 

 

T 
0 
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1) Determine all boundary conditions of the quarter domain. 

2)  What of the three meshes of Figure 2 will produce the most accurate stress calculation around its 

peak value? 1.  Justify the response listing the errors produced in each mesh. 

*Mesh 1 has small squared element at the zone of stress concentration. Mesh 2 is not a good 

option due to mesh incompatibilities; Quality of Mesh 3 is low. 

 

 

  

Mesh 1: 232 Quad8 elements Detail of mesh 1 

  

Mesh 2: 849 Quad8 elements Detail of mesh 2 

  

Mesh 3: 576 Quad8 elements Detail of mesh 3 
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Problem 9.4 Pre-stressed concrete beam 

A part of a pre-stressed concrete beam is shown in the figure below. The beam has a cross section area of 

1m  2m and a total length of 25 m. The pre-stressing cables apply a total end force of 24000 kN over an 

area of 0.8m0.4m. The Young’s modulus and Poisson’s ratio for the concrete material is 30 GPa and 

0.25, respectively. 

 

You are required to find regions of high transverse tensile stress in the concrete beam due to the external 

compressive force of the cables. Prepare a suitable mesh to model the beam for a finite element analysis. 

The maximum number of nodes that you may use is limited to 2000. Solve the problem and answer the 

following questions: 

1- Is a plane stress or plane strain analysis more appropriate? Give reasons. 

2- Discuss the degree of mesh refinement that is desirable in the several zones of the beam. Do you need 

to model the whole beam in order to find the tensile stresses?  

3- Discuss the advantages of the finite element type that you have used in the analysis. Give the total 

number of nodes and elements used in your final analysis. 

4- At what distance from the ends may the compressive stresses be expected to become approximately 

uniform? 

5- Draw (or plot) the region where the transverse tensile stress is greater than 1000 kPa. Give the extent 

of the region from one end. 

 

0.8m

0.8m

0.4m

0.8m

1.0 m

25 m
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CHAPTER 10: VIBRATION OF STRUCTURES 

 

  

VIBRATION OF STRUCTURES 

 

The study dynamics of a structure, whether produced by wind load, truck or pedestrian load, or 

earthquake load, is one of the most important aspects of numerical modelling. Most of the analysis done 

in engineering assumes that the structure is static. Yet there are many situations where the load changes in 

time and therefore inertia and damping effects become important.  In high-rise buildings, wind loads 

activate its natural frequencies and may produce uncomfortable oscillations that need to be damped. The 

101 Tower in Taiwan incorporates a giant mass damper at its top to effectively damp oscillations. 

Earthquakes produces a wide spectrum of frequencies in the ground motion. When these frequencies 

match the natural oscillation of the building, the whole structure may collapse. In bridges there is also 

unprecedented dynamical phenomena, like the constant sawing of the Millennium Bridge in London due 

to pedestrian traffic, or the complete collapse of the Tacoma Narrow Bridge due to wind load.  The 

mathematical modelling of these processes requires a clear understanding of the natural frequencies of the 

structures, and how these frequencies respond to external time-dependent loads. 

10.1 Vibration of one degree of freedom 

If a force is suddenly applied to a structure and then released (a transient excitation), the structure will 

vibrate at a unique frequency determined by its stiffness, called the natural frequency.   If a structure is 

subject to sustained excitation, the vibration response of the structure will vary depending on the 

frequency of the sustained excitation.  As the exciting frequency approaches the natural frequency of the 

structure, the movement of the structure will become magnified, because each application of the exciting 

force will add to the existing vibration of the structure.  This is the phenomenon of resonance.  

 

k

c

m

 

Figure 10-1 Harmonic oscillator with mass m, spring constant k, and damping constant c. 

 

In the dynamic analysis, the structure can be represented as a collection of independent harmonic 

oscillators that responds independently to the external actions. A harmonic oscillator, Figure 10-1, is an 

idealised structure consisting of a mass m  attached to a spring with spring constant k and a damping 

constant c . The spring constant accounts to an elastic force applied to the mass given by 

 elasticF = ku  (10.1) 

where u is the displacement of the mass from its resting position.  The damping constant accounts for 

dissipation of energy that reduces the duration and amplitude of vibrations. As the mass moves the force 

due to damping is proportional to its velocity, and acts in the opposite direction 

 
dampingF = cu  (10.2) 
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where u represents the time derivative of the position, which is the velocity. If F(t) is the time dependent 

external force acting on the mass, the second Newton’s laws states that 

 
elastic dampingmu=F +F +F(t)  (10.3) 

Replacing Eqs. (10.1) and (10.2) in (10.3) we derive the equation of motion of the harmonic oscillator 

 ku+cu+mu=F(t)  (10.4) 

10.2 Vibration of multiple degree of freedom structures 

Consider, for example, the two storey building frame drawn below. 

 

 mass 1 

mass 2 
L1 

L2 

 

Figure 10-2 Lumped mass model of a two storey building 

 

It is assumed that the beams are rigid, so the beam/column connection cannot rotate.  The shape of the 

structure can therefore be defined by the horizontal translation of the upper storey and the horizontal 

translation of the lower storey (degrees of freedom 1 and 2 respectively). Consistent with this assumption, 

the mass of each beam can be lumped at its centroid. This is known as lumped mass model. 

 

The model of a multi degree of freedom structure is often more generally represented by springs and 

masses as below, 

 

 
m2 m1 

 

Figure 10-3 Idealised model of two lumped masses 

 

The Newton’s second law for a system of two undamped mass is given by 

 
1m 1 1 1 2 1 1F = k u +k u +F (t)=mu  (10.5) 

  
2m 1 1 1 2 2 2 2F =k u k +k u +F (t)=mu  (10.6) 

which can be written in matrix form as,  

 
1 1 1 1 1 1

2 2 1 1 2 2 2

m 0 u k k u F (t)
+

0 m u k k +k u F (t)

         
         

         
 (10.7) 

This matrix equation can be expressed in a compact matrix form as follows 
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 + = (t)MU KU F  (10.8) 

where the mass matrix, stiffness matrix, displacement vector, and force vector are given by 

 
1 1 1 1 1

2 1 1 2 2 2

m 0 k k u F (t)
     =           (t)

0 m k k +k u F (t)

       
         

       
M K U F  (10.9) 

10.3 Vibration of a continuum structure 

Using finite element analysis it is possible to analyse dynamics of a continuous structure as a system of 

finite degrees of freedom. The governing equation of the structure is given by 

 
2

T

2
[ ] , t ρ

t





u
L σ + w(x ) =  (10.10) 

where the last term account for the inertial forces acting on the structure, and ρ is the density of the 

material. The weak form of this equation is obtained by multiplying it by a virtual displacement and 

integrating it over its domain. 

  
2

*T T *T

2

V V

( ) ( ) dV ρ  dV        
t


 

 
u

u L σ x w x u  (10.11) 

The integration by part convert this equation into 

 

1

2
*T *T *T *T

2

A V V

dV dA+  dV+ ρ  dV         
t

V




   
u

ε σ u T u w u  (10.12) 

where 1A  is the area were the traction is applied.  The next step is to adapt a mesh to the domain of the 

system, and to introduce a set of interpolation function that connects the displacement of the nodes with 

the continuous displacement of the structure: 

 u NU  (10.13) 

Replacing Eq. (9.18) and (9.19) into Eq. (9.17) the matrix element equation becomes 

  + = (t)MU KU F  (10.14) 

 T Tρ dV   dV
V V

 M = N N K = B DB  (10.15) 

 T T

V

dV da
S

  F N w N T  (10.16) 

10.4 Determining the natural frequencies of the structure 

The goal of a dynamics analysis of a structure is to find the solution of the matrix equation 

 + = (t)MU KU F  (10.17) 

where the matrices M, K, and F(t) are given. We also request initial conditions, which corresponds to the 

initial displacement and velocities of the structure. The Eq. (10.17) can be numerical solved using the so-

called transient solver. This is time stepping algorithm that tracks the position of each node of the 

structure in a sequence of discrete timeframes. In practice, this method is not used very often because it 

involves large amount of calculations.  
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The spectral solvers provide an alternative to the transient solvers that is computationally much more 

favourable. The principle of this solver is to find the natural vibrations of the structure, which are the 

vibration experienced due to an initial disturbance in the system.  This part of the analysis is called 

natural frequency solver.  Once the vibrational modes are found, we will find the response of each natural 

mode to any external load (wind, earthquake, or pedestrian motion).  The numerical solution is then 

assumed to be a linear combination of the response of each individual mode. We will start explaining the 

way to find the natural frequencies of the structure, and then we will introduce the equations of the 

spectral solution. 

 

Natural frequency solver 

To find the natural frequencies and the vibrational modes of the structure we remove the damping forces 

and external forces from the governing equation Eq. (10.17) 

 + =MU KU 0  (10.18) 

We seek as a solution a simple oscillatory function with frequency ω    

 jωt(t) e 0U U  (10.19) 

Replacing Eq. (10.19) into Eq. (10.18) we obtain  

 2

0( ω ) 0 K M U  (10.20) 

To find a non-trivial solution of this equation, we required the matrix accompanying 0U  in Eq. (10.20) to 

be singular. In other words, its determinant should be zero 

 ω 0 2
K M =  (10.21) 

The evaluation of this determinant leads to a polynomial function of 2. The order of the polynomial is 

the same as the number of degrees of freedom dofn , and hence we obtain dofn  independent values of the 

natural frequencies. Therefore, a structure has the same number of natural frequencies as there are degrees 

of freedom to describe the displacements of the masses. The frequencies are usually sorted in ascending 

order, and the smallest one is called the fundamental frequency of the structure. Each frequency will 

correspond to a mode shape according to the Eq. (10.20). The modes shapes correspond to an excellent 

set of base functions to express the general solution of a dynamic probem, as we will see in the next 

section. 

 

Finding the mode shapes 

To find themode shapes of the natural frequency iω , we replace into the Eq. (10.20).  

 2

i i( ω ) 0 K M U  (10.22) 

The corresponding vibrational modes is given by the ijω t

ieU . The mode shapes has a special ortogonality 

property that is derived as follows: Lets consider the Eq. (10.22) For two different natural frequencies iω

and kω  

 

2

i i

2

k k

( ω ) 0

( ω ) 0

 

 

K M U

K M U
 (10.23) 
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Lets multiply the first equation by the transpose of a mode shape kU , and the second equation by the 

transpose of iU corresponding to the natural frequency kω   

 T 2 T

k i i k iω 0 U KU U MU       (10.24) 

 
T 2 T

i k k i kω 0 U KU U MU  (10.25) 

Now we use an important property of the mode shapes taht can be deduced from the structure of the 

matrices: The stiffness matrix K  is symmetric and mass matrix M  is diagonal, so that we can transpose 

the Eq.(10.25) is given by  

 T 2 T

k i k k iω 0 U KU U MU       (10.26) 

Now if we substract this equation from Eq.(10.24)  we get 

 

               2 2 T

i k k i(ω ω ) 0 U MU                     (10.27) 

or, 

 T

i k k iω ω       =0  U MU  (10.28) 

 

This equation states that the mode shapes of different natural frequencies are orthogonal with respect to 

the mass matrix M . Substituting Eq. (10.28) we obtain that  

 T

i k k iω ω       =0  U KU   (10.29) 

so that the mode shapes are also orthogonal with respect to the stiffmess matrix K .  

 

Since the modes shapes correspond to an orthogonal basis in the dofn –dimensional space, any 

displacement of the structure can be expressed as a linear combination of these eigenvectors. Let us 

assume that r is an arbitrary vector in the dofn –dimensional space.  We express this vector as a 

superposition of mode shapes 

 
dofn

k k

k=1

= cr U                            (10.30) 

Each coefficient ic of this superposition can be calculated by multiplying this equation by 
T

iU M and 

using the orthgonality property 

 
T

i
i T

i i

c =
U Mr

U MU
        (10.31) 

These coefficient are known as mass participation factor of the vector r .  

 

 

Finding the mode shapes 

The absolute value or norm of of any dofn –dimensional vector can be defined as  

 
Tr r Mr       (10.32) 
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In most cases it is convenient to convert the mode shapes in orthonormal base by dividing each mode 

shape by its norm. After normalization of the mode shapes, the norm of any vector can be calculated by 

replacing Eq. (10.32) into Eq. (10.30). This results in: 

 

 
dofn

2

i

i=1

r = c   (10.33) 

This equation is nothing more that the generalization of the Pythagoras’ theorem in the high dofn

dimensional space, which is useful for the response spectrum method introduced in the next section. 

10.5 Response Spectrum Method 

To perform an analysis of a structure under time variable loads, it is necessary to have a precise 

information on the evolution of the load with time. In some cases, such as in earthquake analysis, this 

information is not available. Instead we have only the peak responses of harmonic oscillators as a 

function of their frequency. The response spectrum method allows us to calculate the peak response of a 

structure from using the natural frequency analysis (natural frequencies and mode shapes) and the 

response spectrum to the external load. 

 

Response spectrum 

A response spectrum is a plot of the peak response (displacement, velocity of acceleration) of a harmonic 

oscillator subjected to a specified acceleration. Let us start writing the equation for a harmonic oscillator 

 m (t) c (t) k (t)=mg(t)  + +  (10.34) 

Before solving the ordinary differential equation Eq.(10.34), we write them in a convenient form: 

 2

0 i 0(t) 2ξω (t) ω (t)=g(t)  + +  (10.35) 

where 0ω = k/m  is the natural frequencies, and 0c / (2m ω )   is the so-called damping ratio. Duhamel’s 

integral provides a solution to Eq. (10.35) 

 
i

t -ξω (t τ)
2

i d d i

d0

e
(t) g(t) sin(ω (t τ))dτ         ω =ω 1 ξ

ω




    (10.36) 

The relative displacement spectra is defined as the maximal displacement of the harmonic oscillation due 

to this ground motion 

 0 i max
S (ξ,ω )= (t)  d   (10.37) 

In similar way, the velocity response spectrum, and the acceleration response spectrum are given by 

 v 0
max

S (ξ,ω )= (t)  (10.38) 

 a 0
max

S (ξ,ω )= (t)  (10.39) 

In the case of earthquake response, the response spectral is calculated from the ground acceleration and 

the damping on the system. For the analysis of a structure, a history data of earthquake is analysed and the 

response spectral can be found in the tables and standards. 
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Spectral response solver  

The spectral response analysis provides a solution to the following equation: 

 g(t)MU +CU + KU Mr  (10.40) 

where the external force is written as (t)= g(t)F Mr , being g(t) the imposed acceleration and the influence 

coefficient factor r an dofn -dimensional vector accounting to the participation the external load in each 

one of the nodes. We proposed solution to Eq. (10.25) as a time-modulated combination of modes 

 
dofn

k k

k=1

(t)= (t)U U  (10.41) 

where kU the vibrational models which are assumed to be normalized k 1U  as Inserting Eq. (10.41) into 

Eq. (10.40) we obtain 

  
dofn

k k k k k k

k=1

(t) (t) (t) g(t)    MU + CU + KU Mr  (10.42) 

Now we assume that the matrices M and C are diagonal, which is valid to classically mass-damped 

systems. Multiplying by 
T

iU  and using the orthogonality of the modes given by Eq. (10.28) 

 T T T T

i i i i i i i i i i(t) (t) (t) g(t)   U MU + U CU + U KU U Mr  (10.43) 

Simplifying 

 
i i i i i i i im (t) c (t) k (t)=m g(t)   + +  (10.44) 

 
T

T T T i
i i i i i i i i i i T

i i

m       c      k          
U Mr

U MU U CU X KX
U MU

 (10.45) 

Before solving the ordinary differential equations Eq.(10.44), we write them in a convenient form: 

 2

i i i i i(t) 2 (t) (t) = g(t)i    + +  (10.46) 

where i i iω =k /m  are the natural frequencies, and i ic / (2m ω )   are the damping ratios. Duhamel’s 

integral provides a solution to Eq.(10.46). 

 i i( ) Γ ( ,ω , )i t S t   (10.47) 

where  

 
i-ξω (t τ)

2

i d d i

d0

e
S(ξ,ω ,t) g(t) sinω (t τ)dτ     ω =ω 1 ξ

ω

t 

    (10.48) 

Note that the function iS(ξ,ω ,t)  is the response of an harmonic oscillator with natural frequency ω  and 

damping ratio ξ   to a imposed acceleration g(t). 

 

Replacing Eq. (10.48) into Eq. (10.47) and into Eq. (10.41) gives the spectral solution of the problem. In 

practice, the calculation dofn  ordinary differential equation may result cumbersome. Thus the problem is 

further simplified by truncating the sum in Eq. (10.41) to keep only the modes that mostly contribute to 

the dynamical response of the system.  First we consider the maximal modal displacement of each mode: 
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 i,max i i imax
= (t) = Γ S(ξ,ω )   (10.49) 

Then the total response can be calculated by summing the individual responses of each degree of 

freedom. The simplest superposition method is the absolute sum that assumes all modals peaks at the 

same time. The maximum response is given by 

 
max i,max i i

1 1

Γ S(ξ,ω )
dof dofn n

i i

U 
 

    (10.50) 

In the SRSS method the maximal response is obtained from Euclidian norm of individual response 

  
22

max i,max i i

1 1

Γ S(ξ,ω )
dof dofn n

i i

U 
 

    (10.51) 

There are more alternatives to superpose the modes, but the most important point is that modes of high 

frequencies may be removed from the sum as they do not contribute much to the sum. 
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Problems 

 

Problem 10.1. Spectral Response 

A two storey frame building has the mass described in the following figures. The upper columns have a 

stiffness k and the lower one 2k, where k=200kN/m.  

 

 
 

(a) Two-storey building 

 

(b) Spectral acceleration response 

 

1. Determine the matrices K and M 

2. Calculate the natural frequencies 

3. Calculate the mode shapes 

4. Calculate the mass participation factor of each mode 

5. Obtain the acceleration of each node using the spectral response given in Figure 2 

 

 

  

mass 12t

mass 24t
3m

5m

10m
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APPENDIX A 

 

A SUMMARY OF MATRIX ALGEBRA 

A matrix is a set of numbers arranged in rows and columns. An r by c matrix A (rxc) is a matrix which 

has a total of r rows and c columns. 

 

The following rules and definitions apply: 

 

 A square matrix A(nxn) is a matrix which has as many rows as columns. 

 An identity matrix I of dimensions nxn is a square matrix. 

 A matrix A(rxc) can be multiplied by a scalar number p, by multiplying each of its elements by that 

number. The result is a matrix B=pA of the same dimensions, rxc, as A. 

 Two matrices A (raxca) and B(rbxcb) can be added together or subtracted from each other if and only 

if ra=rb and ca=cb. The result is a matrix C with the same dimension as A and B. 

 Two matrices A (raxca) and B(rbxcb) can be multiplied by each other (AxB) if and only if ca=rb. The 

result is a matrix C with dimensions raxcb. 

 

A SUMMARY OF MATRIX OPERATIONS BY MICROSOFT EXCEL 

To multiply matrix M1 (mxn) by M2 (nxp) using Microsoft-Excel, do the following: 

 

1. Enter values of matrices M1 (mxn). Select the matrix with the mouse (the area becomes black as you 

select it). Give the matrix a name (say, mat1) in the “name box” in the top left-hand corner of the 

sheet. Do the same for M2 (mat2) 

2. Select a blank area the size of the resulting multiplication matrix (mxp) with the mouse 

3. Type in: =MMULT(mat1,mat2).  

(If, for any reason, you haven’t given the matrices names, you can always select them as you are 

typing the function) 

4. Press Ctrl-Shift-Enter, Results are then displayed in the selected area. 

 

A similar procedure applies to other matrix functions. 

 

Other useful MICROSOFT-EXCEL functions are:  

 

TRANSPOSE(mat1), transpose of a matrix 

 

MDETERM(mat1), determinant of a matrix (result is a scalar, no need to select area of resulting matrix 

and no need to type Ctrl-Shift-Enter, only Enter) 

 

MINVERSE(mat1): inverse of a matrix 

 

MMULT(mat1,mat2): multiplication of 2 matrices 
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Exercise A1 

Given the following matrices: 

 

 















 



111

322

121

A  



















831

267

10.52

B  























152

212

111

C  

























2212

2391

1121

D  













310

221
E  












412

012
F  

























210

521

831

G  

 



































2291

2122

2111

1121

11121

H  

   





















115552

112212

123321

I  

   

 



















11

22

21

J  

  

 


















1

1

2

b  

 

A: For each of the following operations indicate: 

i: Whether the operation can be performed 

ii: If it can be, the size of the resulting matrix? (do not perform any calculations). 

  1: [A]+[B]      2: [A]-[B] 

  3: [A]+[D]      4: [A]C] 

  5: [A][H]      6: [H][A] 

  7: [A[I]       8: [D]-1 

  9: [A]-1     10: [D]T 

11: [A]T 

 

B: Perform manually and then verify with MS Excel the following operations: 

 

1: [A]+[B]  2: [A] [B]   3:[A][D] 

 

 

C: Perform with MS Excel the following operations 

 

1: [A][C]  2: [C][A]  3: [J]([E]+[F]) 

4: [J][E]+[J][F] 5: [A][G] 

 

D: Answer the following questions 

 

1: From the previous operations, deduce the inverse [A]-1 of matrix [A] without performing 

any calculations 

2: Calculate the inverse [A]-1 of matrix [A] with MS Excel 

3: Calculate [x] in [A][x]=[b], where [x] is a 3x1 column vector 

 

Exercise A2: 

Given the following 6x6 matrix [M]: 
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



























6066644

3503254

4440243

3433032

3234201

2122110

M ,  





























6

5

4

3

2

1

b  

 

You are required to perform the following operations using MS-Excel: 

 

 1. [A]=[M]T 

 2. v = determinant ([A]) 

 3. [C]=[A]-1 

 4. Verify that the matrix inversion is correct by multiplying [A] by [C] 

 5. Calculate [x] such as [A][x]=[b] by multiplying [A]-1[b] 

 6. Verify that operations are correct by multiplying [A][x] to get [b] 
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APPENDIX B  

 

B.1: Local and Global Coordinate Systems 

The position of a point in space is usually defined by nominating its coordinates (x, y, z) relative to a 

fixed set of reference axes. These coordinates are sometimes called the global coordinates. 

 

In the course of analysis it may be more convenient to introduce a local set of coordinates. For example, it 

may be decided to measure x in the east direction, y in the north direction and z vertically. However in 

examining the behaviour of a particular piece of bracing it may be much more convenient to adopt a local 

set of axes with one of the coordinate axes directed along the centroid of bracing. 

 

If a local set of coordinate axes is introduced it is desirable to be able to express the local coordinates in 

terms of the global coordinates and vice versa. For simplicity of presentation only the two dimensional 

situation will be considered here. A set of local axes derived from translation is shown in Figure  B.  

 

X

Y

(x0,y0)

x

y

X

Y

x

y

 

Figure  B. 1 Translation of axes 

 

It can be seen that 

 

                                                                    X = x   x0 (B.1) 

Y = y   y0 

A set of local axes generated by anti-clockwise rotation through the angle θ is shown in Figure  B. . 

 

It follows that for this case: 

                                              

cos( ) sin( )

sin( ) cos( )

X x y

Y x y

 

 

  

  
 (B.2) 

or in matrix notation: 

                                          
X +cos( )  sin( ) x

Y sin( )  cos( ) y

 

 

     
     

     
 (B. 3) 
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X

    Y

x

y

X

Y

x

y


 

Figure  B. 2 Rotation of axes 

 

The relationship between global and local coordinates is: 

 

                                             
x cos( )  sin( ) X

y sin( )  cos( ) Y

 

 

     
     

     
 (B.4) 

Or alternatively 

  

                                                                                 r = HR  (B.5) 

In Equation (B.5) 

 











y

x
r ,     

X
=

Y

 
 
 

Ρ          and         
cos( )  sin( )

sin( )  cos( )

 

 

 
  

 
H  

 

Comparison of Equations (B. 3) and (B.4)  show that the matrix H is orthogonal and so: 
T1 HH   

In 3D: 

                                                                

1 1 1

T

2 2 2

3 3 3

I m n

= I m n

I m n

 
 
 
  

H  (B.6) 

where l1, l2 and l3 are the cosines of the counter-clockwise angles between the x-axis and the X, Y and Z 

axes, respectively. m1, m2 and m3 are the cosines of the counter-clockwise angles between the y-axis and 

the X, Y and Z axes, respectively, and so on. 

In a right-angled Cartesian coordinate system, the following relationships must be satisfied: 

 

l1l2 + m1m2 + n1n2 = 0 

l2l3 + m2m3 + n2n3 = 0 

l3l1 + m3m1 + n3n1 = 0 
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Example B.1 

To illustrate the introduction of local axes, suppose that on a particular site a set of global axes has been 

set up with the x-axis being in the horizontal plane and the y-axis vertically up. Bore hole data from the 

site shows the presence of a narrow layer of silt inclined at 20 to the horizontal. In examining the 

behaviour of the seam it is decided to introduce a local set of axes with its origin 10 m below the surface 

and with the X-axis directed along the seam (in a downwards direction) and the Y-axis perpendicular to 

the seam. The global coordinates have their origin at the point of intersection of the seam with the 

surface. 

 

10 m

X

Yx

y

20o

(a)

X

Y
x

y

20o

(b)
X

*

Y
*

Global Coordinates

Local Coordinates

 

Figure  B. 3 Rotation and Translation of axes 

 

The calculation is best performed in two stages. First consider the intermediate local coordinates (X*,Y*) 

shown in Figure  B.(b). These coordinates are located at x0=27.4748, y0=-10. Thus 

 

X*= x   27.4748 

Y*= y +10 

The relationship between (X,Y) and (X*,Y*) can be found by rotation of axes (notice if you use 

Equation (B.2) that θ = -20) and it is found that: 

 

X = 0.9397X*    0.3402Y* 

Y = 0.3420X* + 0.9397Y* 

This finally leads to the expression for local coordinate in terms of global coordinates: 

 

X = 0.9397x   0.3402y   29.2380 

Y = 0.3420x + 0.9397y 

and to the expression of global coordinate in terms of local coordinates: 

 

x =  0.9397X + 0.3402Y + 27.4748 

y = -0.3420X + 0.9397Y   10 

 

B.2: Cylindrical Polar Coordinates 

The treatment given in the previous sections has been expressed in terms of cartesian coordinates. In 

many applications it is more convenient to employ curvilinear coordinates. Typical of these are the 

cylindrical polar coordinates r, , z, which are related to cartesian coordinates by the relation 
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 x = r cos θ， y = r sin θ 

The coordinates are illustrated in Figure  B.4 

 

x

z



y

Z

X

Y

 r

 

Figure  B. 4: Polar coordinates 

 

Exercise B.1 

A rectangular element ABCD has vertices with coordinates as given below. 

 

 x(m) y(m) 

A 2.0000 0.5000 

B 6.3879 2.8971 

C 1.5937 11.6730 

 

 

-2.7943 9.2758 

 

The coordinates of the point P is: 

 

x(P)=1.2768 m           y(P)=8.0814m 

If the origin of local coordinates is taken at A and thex-axis is directed along AB and the y-axis is 

directed along AD find the local coordinates of the point P. 

 Answer: X(P) = 3m Y(P) = 7m 

 

B.1: Transformation of Displacement 

If forces are applied to a body it will deform as shown in Figure  B.  and thus a point originally at positionP 

will move to an adjacent position Q.  

 

The point is said to be displaced and the displacement is defined by: 

                                                                           u=r(Q)   r(P)  (B.7) 

 Thus the displacement components are given by: 

 

                                                                        x

y

u x(Q) - x(P)
=

u y(Q) - y(P)

   
   

  

 (B.8) 
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P(x0,y0)

x

y

Q(x,y)

 

Figure  B. 5 Displacement of a point 

 

These displacements are expressed in terms of the global coordinate system. It is often convenient to 

determine what the displacements are in a local coordinate system. Clearly a translation of axes does not 

change the displacement components, however a rotation of axes does induce a change. Therefore, it can 

be seen that: 

                                                                 
X x y

Y x y

u = u cos(q) + u sin(q)

u = -u sin(q) + u cos(q)

 (B.9) 

and conversely 

 

                                                       
x X Y

y X Y

u = u cos(q) - u sin(q)

u = u sin(q) + u cos(q)
 (B.10) 

These equations may be written in matrix form as follows: 

 

                                                                                     


 T

u H U

U H u
 (B.11) 

where 

 
u

u
=

y

x









u  is the displacement vector in the global coordinates 

 
u

u
=

Y

X









U  is the displacement vector in the local  coordinates 

 

cos(q) -sin(q)
=

sin(q) +cos(q)

 
 
 

H  

 

Example B.2 

In the situation described in example 1.1 the following movements are recorded: 

 

ux = 18 mm 

uy  =  5 mm 
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The local coordinate system can be used to assess if this movement corresponds to movement along the 

seam. 

It is found that:  

 0.9397 0.3420 18 18.62

 0.3420 0.9397 5 1.46

X

Y

u mm

u mm

       
        

       
 

and thus there is a substantial movement along the seam. 

 

B.2: Rigid Body Displacement 

A body may undergo modes of movement in which there is no change of shape. Figure  B.  illustrates 

such a movement in the xy plane.  

 

Initial position

x

y

Final position

O

 

Figure  B. 6 Rigid body movement 

 

It can be seen that the rigid body can be broken up into three distinct movements, a translation in 

the x direction, a translation in the y direction and a rotation about a line parallel to the z-axis through the 

point O. It can be shown that for small rotations 

 

ux = xf – xi = uxo    (yi   yo) wz 

uy = yf – yi = uyo + (xi   xo) wz 

where 

uxo is the rigid body translation in the x direction 

uyo is the rigid body translation in the y direction 

wz is the rotation about the z axis 

and  xo, yo are the coordinates of the reference point O. 

 

Exercise B. 2 

The centre of a 5m radius silo (a cylindrical container) is located at a pointx=25m, y=10m, z=0m. The 

following deflections: 

ux = 10mm 

uy =  5mm 

uz =  2mm 

are detected at the point x=29m, y=13m, z=10m. Calculate the radial component of deflection. (Answer: 

11mm)  
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APPENDIX C  

 

C.1: Direct Assembly of the Global Stiffness Matrix 

It is not necessary to assemble the global stiffness matrix of the unrestrained structure. Instead, a system 

containing only the unrestrained degrees-of-freedom can be assembled to form the restrained stiffness 

matrix. There are several different strategies that can be adopted to incorporate boundary conditions while 

assembling the global stiffness matrix. Here an approach based on transformation of the local degrees-of-

freedom to the global degrees-of-freedom is discussed in detail.  

 

4 2 1 
3H 

x 

y 

5 3 

6 

H 

A, E 

1 2 3 

4 5 
6 7 8 

9 

10 

 

Figure  C. 1 Truss structure 

Each bar element has ndof=4 local degrees-of-freedom, which is equal to the number of nodes in the 

element times the number of degrees-of-freedom per node. The structure has also Ndof global degrees-of-

freedom, which is equal to the number of nodes in the structure times the number of degrees-of-freedom 

per node less the number of restrained degrees-of-freedom. The number of the global degrees-of-freedom 

for the truss structure shown in Figure  C. is Ndof =6  2 - 4 = 8. Assume that the unrestrained degrees-of-

freedom can be rearranged as:  

 R 1 2 3 4 5 6 7 8Δ  { a  ,  a  ,  a  ,  a  ,  a  ,  a  ,  a  ,  a  }  

By convention, the rearrangement of the global degrees-of-freedom is formed by going through all the 

nodes in ascending sequence and allocating an index number i to each degree of freedom that is 

unrestrained, ai. The restrained degrees-of-freedom have a value of zero and do not contribute to the 

vector of the global degrees-of-freedom. For example the restrained and unrestrained degrees-of-freedom 

for the truss are: 

 

Unrestrained DOF u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6 

Global DOF 0 0 a1 a2 a3 a4 a5 a6 a7 a8 0 0 

 

where a1, for example, is the global label for u2 and a2 is the global label for v2 etc. Therefore, the local 

degrees-of-freedom for each element can be related to the global degrees-of-freedom. For example for 

element 6:  

 

Local DOF for element 6 u2 v2 u5 v5 

Global DOF a1 a2 a7 a8 

 

The vector of the local degrees-of-freedom can be related to the vector of the global degrees-of-freedom 

for the restrained structure by a transformation matrix, Q.  

Re

e Δ . Q  δ   (C.1) 
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The size of the transformation matrix is (ndofNdof). The component qij of matrix Qe is1 if the ith degree-

of-freedom of the element e (the local degrees-of-freedom) is equal to jth global degree-of-freedom, 

otherwise qij is zero. For element 6, for example, Q6 is: 

 

6

2

6

2

6

1

6

1

5

5

2

2

6

65443322

87654321

v

u

v

u

v

u

v

u

10000000

01000000

00000010

00000001

Q

vuvuvuvu

aaaaaaaa





















 
 

The transformation matrices Q for all elements are given in Application of the principle of virtual work 

eliminates the virtual displacement vector from Equation (C.7) and the element stiffness matrix is 

obtained in terms of the global degrees-of-freedom which is suitable to be used in the global stiffness 

matrix for the complete structure directly: 

 

 dVQ.B.D.B.QK e

TT

e

e

R  (C.8) 

The unrestrained element stiffness matrix in terms of the local degrees-of-freedom was given in Equation 

(2.18) as: 

 

 dVB.D.Bk Te
 (C.9) 

Therefore, the relationship between the unrestrained element stiffness matrix, ke, and the restrained 

element stiffness matrix in terms of the global degrees-of-freedom, 
e

RK can be obtained by comparing 

Equation (C.8) with Equation (C.9):  

 

e

eT

e

e

R Q.k.QK   (C.10) 

 

Table C. 1Substituting Equation(C.1) into Equations (2.8) and (2.10) results in: 

 

Re

e Δ . Q . B   δ . B ε   (C.5) 

Re

e  Δ . Q . B . D   δ . B . D  σ   (C.6) 

where ε and σ are the stress and strain vectors, B is the matrix of strain-displacement relationship. Thus 

the equation of internal virtual work at the element level becomes: 

 

dVΔ.Q.B.D.B.Q.ΔdVσ.ε Re

TT

e

*T

R

*T

   (C.7) 

Application of the principle of virtual work eliminates the virtual displacement vector from Equation 

(C.7) and the element stiffness matrix is obtained in terms of the global degrees-of-freedom which is 

suitable to be used in the global stiffness matrix for the complete structure directly: 

 

 dVQ.B.D.B.QK e

TT

e

e

R  (C.8) 
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The unrestrained element stiffness matrix in terms of the local degrees-of-freedom was given in Equation 

(2.18) as: 

 

 dVB.D.Bk Te
 (C.9) 

Therefore, the relationship between the unrestrained element stiffness matrix, ke, and the restrained 

element stiffness matrix in terms of the global degrees-of-freedom, 
e

RK can be obtained by comparing 

Equation (C.8) with Equation (C.9):  

 

e

eT

e

e

R Q.k.QK   (C.10) 

 

Table C. 1 Transformation matrices for the elements 





















00000010

00000001

00000000

00000000

Q1  





















10000000

01000000

00000010

00000001

Q6  





















00100000

00010000

00000010

00000001

Q2  





















00001000

00000100

00100000

00010000

Q7  





















00000000

00000000

00100000

00010000

Q3  





















10000000

01000000

00100000

00010000

Q8  





















00001000

00000100

00000000

00000000

Q4  





















10000000

01000000

00000000

00000000

Q9  





















00001000

00000100

00000010

00000001

Q5  





















10000000

01000000

00001000

00000100

Q10  

 

To see how the operation in Equation (C.10) forms the restrained stiffness matrix in terms of the global 

degrees-of-freedom from a local stiffness matrix, consider, for example, the local stiffness matrix of 

element 6: 
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8

7

2

1

5

5

2

2

6

44

6

43

6

42

6

41

6

34

6

33

6

32

6

31

6

24

6

23

6

22

6

21

6

14

6

13

6

12

6

11

6

5522

8721

a

a

a

a

v

u

v

u

kkkk

kkkk

kkkk

kkkk

k

vuvu

aaaa























 

Each component of the stiffness matrix, 
6

ijk , is tagged with one ar (a global degree-of-freedom associated 

with row i of the stiffness matrix) and one ac (a global degree-of-freedom associated with column j of the 

local stiffness matrix). The tags ar and ac show that kij shall be assembled in row r and column c of the 

global stiffness matrix. For example, the operation in Equation (C.10) transforms component 
6

23k into a 

position at the second row (due to a2) and the seventh column (due to a7) of the global stiffness matrix. 

The restrained stiffness matrix for element 6 in the global system is: 

 



































6

44

6

43

6

42

6

41

6

34

6

33

6

32

6

31

6

24

6

23

6

22

6

21

6

14

6

13

6

12

6

11

6

R

kk0000kk

kk0000kk

00000000

00000000

00000000

00000000

kk0000kk

kk0000kk

K  

 

The stiffness matrices of all the elements in the global system are presented in Table C. 2. 
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Table C. 2 Element stiffness matrices in the global system 

   



































00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000001

H

EA
K1

R

 











































11000011

11000011

00000000

00000000

00000000

00000000

11000011

11000011

H22

EA
K6

R

 

   







































00000000

00000000

00000000

00010001

00000000

00000000

00000000

00010001

H

EA
K2

R

 











































00000000

00000000

00111100

00111100

00111100

00111100

00000000

00000000

H22

EA
K7

R

 

   




































00000000

00000000

00000000

00010000

00000000

00000000

00000000

00000000

H

EA
K3

R

    







































10100000

00000000

10100000

00000000

00000000

00000000

00000000

00000000

H

EA
K8

R

 







































00000000

00000000

00000000

00000000

00001100

00001100

00000000

00000000

H22

EA
K4

R

 







































11000000

11000000

00000000

00000000

00000000

00000000

00000000

00000000

H22

EA
K9

R

 

   







































00000000

00000000

00000000

00000000

00001010

00000000

00001010

00000000

H

EA
K5

R

    







































00000000

01000100

00000000

00000000

00000000

01000100

00000000

00000000

H

EA
K10

R
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APPENDIX D  

 

D.1: Linear Triangular Elements  

From the Section 6.1, the 3-noded triangular element shown in Fig.D.1 is the simplest possible planar 

element and one of the earliest finite elements. It has nodes at the vertices of the triangle only. For a plane 

elasticity problem, where all displacements are in the plane, the element has two degrees-of-freedom at 

each node, u and v, corresponding to the displacements in x and y directions respectively. Thus the 

element --has a total of 6 degrees-of-freedom. The displacement vector and the force vector are: 

 
T

e 1 1 2 2 3 3[u , v , u , v , u , v ]u  

T

e 1 1 2 2 3 3[p , q , p , q , p , q ]f  

Since each of these vectors contains 6 components, the size of the element stiffness matrix, ke, is 66.  

u1, p1

v1, q1

x, u, p

y, v, q

1

3

2
u2, p2

v2, q2

u3, p3

v3, q3

 

Fig. D.1: 3-noded triangular element 

 

Stiffness matrix of linear triangular finite element 

The general procedure explained in Section 2.3 is employed here to calculate the stiffness matrix of the 3-

noded triangular element. 

 

1. Local coordinate and node numbering system. 

The node numbering and the Cartesian coordinate system shown in Fig. D.1 may be used for the 

element. The nodes are numbered in increasing order anti-clockwise. The coordinates of the nodes are 

(x1, y1), (x2, y2) and (x3, y3). It is noted that the orientation of the element with respect to the xy 

coordinate system is completely arbitrary. Therefore the element stiffness matrix will be directly 

expressed in the xy global coordinate system. 

 

2. Displacement function 

The variation of the displacement components, u and v, within the element can be expressed as 

complete linear polynomials of x and y: 
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    yaxaau 321   = a.y)f(x,  (D.1) 

ybxbbv 321  = b.y)f(x,  

where y}  x,{1,y)f(x,  , 
T

321 }a ,a ,{aa   and 
T

321 }b ,b ,{bb  . 

 

3. Relating displacements within the element to the nodal displacements 

The general displacements within the element can be related to the nodal displacements using shape 

functions: 

         332211 uNuNuNu   = 
eT u.N  (D.2) 

332211 vNvNvNv   = 
eT v.N  

where ui and vi are the nodal displacements in x and y directions, respectively, and Ni are the linear 

shape functions for the element, as obtained in Chapter 3: 

1T y).Cf(x,N   



















33

22

11

yx1

yx1

yx1

C    and   

























123123

211332

122131132332

1

xxxxxx

yyyyyy

yxyxyxyxyxyx

2A

1
C  

 

where A is the area of the triangular element, x1,2,3 and y1,2,3 are the x and y coordinates of the first, 

the second and the third node of the element. 

Therefore the shape functions are: 

 






















 

123123

211332

122131132332

1TT

xxxxxx

yyyyyy

yxyxyxyxyxyx

yx,1,
2A

1
y)C(x,fN  




















































2A

)xy(x)yx(y)yxy(x
2A

)xy(x)yx(y)yxy(x
2A

)xy(x)yx(y)yxy(x

N

N

N

N

12211221

31133113

23322332

3

2

1

 

Equation (C.1) can now be written in matrix format as: 

















































3

3

2

2

1

1

321

321

v

u

v

u

v

u

N0N0N0

0N0N0N

v

u
    or     

eδ.Ny)δ(x,   
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4. Strain-displacement relationship 

The strains at any point within the element, ε(x,y), can be related to the nodal displacements, δe, by 

the strain-displacement matrix, Be. 

 
e

e δ.By)ε(x,   (D.3) 

The matrix Be has been defined for a general case in Section 5.1.2 and contains derivatives of the 

shape functions. For the general case of a three-dimensional element with m nodes, the strain vector 

has 6 components and the matrix Be can be defined as: 

 

 





























mxmz2x2z1x1z

mymz2y2z1y1z

mxmy2x2y1x1y

mz2z1z

my2y1y

mx2x1x

e

N0NN0NN0N

NN0NN0NN0

0NN0NN0NN

N00N00N00

0N00N00N0

00N00N00N

B













 (D.4) 

 

where Nix, Niy and Niz are derivatives of shape function i with respect to x, y and z, respectively. Each 

row of the matrix Be refers to one component of the strain vector. For planar problems, where some 

components of the strain vector are zero, the size of the matrix Be can be reduced. For example, the 

strain vector under plane stress and plane strain conditions can be written as: 

 










































yu/xv/

yv/

xu/

γ

ε

ε

ε

xy

yy

xx

e
 (D.12) 

Therefore, the matrix Be for these conditions can be obtained as: 



















mxmy2x2y1x1y

my2y1y

mx2x1x

e

NNNNNN

N0N0N0

0N0N0N

B







 (D.6) 

For the triangular element with three nodes, the matrix Be is: 



















3x3y2x2y1x1y

3y2y1y

3x2x1x

e

NNNNNN

N0N0N0

0N0N0N

B  (D.7) 

The derivatives of the shape functions for the triangular element can be obtained as: 
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









































































)x(x

)y(y

)x(x

)y(y

)x(x

)y(y

2A

1

N

N

N

N

N

N

12

21

31

13

23

32

3y

3x

2y

2x

1y

1x

 (D.8) 

Therefore the matrix Be is obtained for the linear triangular element as: 

 

 

























)y(y)x(x)y(y)x(x)y(y)x(x

)x(x0)x(x0)x(x0

0)y(y0)y(y0)y(y

2A

1
B

211213313223

123123

211332

e  (D.9) 

It can be seen that Be and therefore strains within the linear triangular element are independent of x 

and y. For this reason, this element is often called the “constant strain triangle”. 

 

5. Stress-strain relationship 

The stress-strain relationships for continuum problems have been defined in Section 5.3 as: 

εD.σ   (D.11) 

where D is the matrix of elastic moduli. Expressions for D have been given for cases of general three-

dimensional problems as well as plane strain, plane stress and axial symmetry problems. For example, 

D for plane strain problems is: 
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


































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
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











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yy
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ε

ε

G00

02Gλλ

0λ2Gλ

σ

σ

σ

 (D.13) 

where λ and G are Lamé modulus and shear modulus, respectively.  

 

6. Relating the internal stress to the external loads  

The internal stress can be related to the external loads using the principle of virtual work for the 

element. This leads to the equation for calculation of the element stiffness matrix. 

 

 dvB.D.Bk e

T

e

e
= t.AB.D.B e

T

e  (D.14) 

 

where A and t are the area and the thickness of the element, respectively. Note that because Be and D 

are independent of coordinate location (x, y), the integration over this element can be performed 

easily and exactly.  
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Application of linear triangular elements in analysis of a continuum  

A simple example is given here to demonstrate application of the linear triangular finite elements in the 

analysis of a continuum problem. The elastic body to be analysed is a simple homogeneous long block, a 

cross section of which is shown in Fig. D.2(a). It is constrained by a smooth rigid horizontal boundary 

and a smooth rigid vertical boundary along its two sides. The block is subjected to normal stresses applied 

to the other two sides. The Young’s modulus, E, and the Poisson’s ratio, ν, for the block are 56 MPa 

and 0.4, respectively. 

The general procedure in finite element analysis, explained in Section 2.2, will be used here for the 

analysis of the problem. 

 

-
(a) (b)

(4)(2)

(3)

(1)

3

 5

2 1

4

100 kPa

 200kPa

4 m

5 m

x

y

 

Fig. D.2: Elastic block subjected to uniform loads 

 

1. Chose a suitable coordinate system 

The Cartesian coordinate system shown in Fig.B(b) is suitable for the problem. 

2. Divide the geometry of the problem into a number of finite elements. 

The geometry is divided into 4 triangular elements as shown in Fig.B.2(b). 

3. Use a suitable node numbering system. 

The node numbering system shown in Fig. D.2(b) is chosen. As explained in section 4.5, a good node 

numbering system should minimise the difference between the node numbers of any member that is a 

part of the structure. 

The nodal co-ordinates are shown in Table D. . The data defining each of the elements is given in 

Table D.. 

 

Table D.1: Nodal coordinates  

Node x (m) y (m) 

1 4.0 5.0 

2 0.0 5.0 

3 2.0 2.5 

4 4.0 0.0 

5 0.0- 0.0 
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Table D.2: Element data 

Element Node 1 Node 2 Node 3 

1  1 2 3 

2  2 5 3 

3 5 4 3 

4 4 1 3 

 

4. Calculate the stiffness matrices of all elements 

The stiffness matrix of each element can be calculated using Equation (D.14), assuming a unit 

thickness for the element. 

 dvB.D.Bk e

T

e

e
= AB.D.B e

T

e  (D.15) 

where Be and D can be calculated using Eqs.(6.24) and (D.13). Note that in Equations,  x1,2,3 and y1,2,3 

are the x and y coordinates of the first node, the second node and the third node of the element. For 

example, the matrix Be for element 2 is calculated as follows. 

 

























)y(y)x(x)y(y)x(x)y(y)x(x

)x(x0)x(x0)x(x0

0)y(y0)y(y0)y(y

2A

1
B

522523323553

253253

522335

2  

and  )y x- y (x )y x- y (x -)y x- y (x 2A 255223325335   

 

Substituting -the x and y coordinates of the three nodes in the above relations results in: 

2A=(02.5 –2 0) - (02.5 –25) + (00 –05) =10 m2 

























0)(50)(05)(2.52)(02.5)(00)(2

0)(002)(000)(20

00)(505)(2.502.5)(0

10

1
B2  

























0.5000.250.200.250.20

000.2000.200

00.5000.2500.25

B2  
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The matrices Be for all elements are given in Table D.. 

 

Table D.3: Strain-displacement matrices 

 

























00.400.250.200.250.20

0.4000.2000.200

0000.2500.25

B1

 

 

























0.5000.250.200.250.20

000.2000.200

00.5000.2500.25

B2

 

 

























00.400.250.200.250.20

0.4000.2000.200

0000.2500.25

B3

 

 

























0.5000.250.200.250.20

000.2000.200

00.5000.2500.25

B4

 

 

The matrix of elastic moduli, D, for plane strain analysis is: 























G00

02Gλλ

0λ2Gλ

D  

where 
 ν12

E
G


 =20000 kPa and 

 2ν1

2Gν
λ


 =80000 kPa. Therefore: 



















2000000

012000080000

080000120000

D  

In this problem the material is assumed to be homogeneous and therefore the matrix of elastic moduli, 

D, is the same for all elements. 
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The stiffness matrices for all elements are calculated based on Equation (D.15) and presented in Table 

D.. 

 

Table D.4: Element stiffness matrices 

 





































96000

016000Sym.

480001000030250

4000080002500041500

4800010000177501500030250

40000800015000335002500041500

k1
 

 





































25000

015000Sym.

125004000030250

10000750002500041500

1250040000177501500020250

100007500015000335002500041500

k2
 

 





































96000

016000Sym.

480001000030250

4000080002500041500

4800010000177501500030250

40000800015000335002500041500

k3
 

 





































25000

015000Sym.

125004000030250

10000750002500041500

1250040000177501500030250

100007500015000335002500041500

k4
 

 

5. Assemble the global stiffness matrix 

The global stiffness matrix is assembled using the direct method of assembly explained in section 4.2. 

The unrestrained degrees-of-freedom and the global degrees-of-freedom for the whole structure are: 

 

Unrestrained DOF u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 

Global DOF a1 a2 0 a3 a4 a5 a6 0 0 0 

 

Therefore the unknown displacements, or the global variables, have six components:  
T

654321R } a  , a  , a  , a  , a  , a { Δ   
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where a4, for example, is the global label for u3. 

 

he local degrees-of-freedom for each element can be related to the global degrees-of-freedom. For 

example, for element 2: 

 

Local DOF for element 2 u2 v2 u5 v5 u3 v3 

Global DOF 0 a3 0 0 a4 a5 

 

The vector of the local DOF can be related to the vector of the global DOF for the restrained structure 

by a transformation matrix, Qe.   

Re

e Δ . Q  δ   

For example, Qe for element 2 is: 

3

3

5

5

2

2

2

433211

654321

v

u

v

u

v

u

010000

001000

000000

000000

000100

000000

Q

uvuvvu

aaaaaa





























 

 

The transformation matrices, Qe, for all elements are given in Table D.. 

 

Table D.5: Transformation matrices for all elements 

    Element 1: 







































53

43

32

2

21

11

av

au

av

0u

av

au

   



























010000

001000

000100

000000

000010

000001

Q1

 

    Element 2: 







































53

43

5

5

32

2

av

au

0v

0u

av

0u

   



























010000

001000

000000

000000

000100

000000

Q2

 
    Element 3: 







































53

43

4

64

5

5

av

au

0v

au

0v

0u

   



























010000

001000

000000

100000

000000

000000

Q3

 

    Element 4: 







































53

43

21

11

4

64

av

au

av

au

0v

au

   



























010000

001000

000010

000001

000000

100000

Q4
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The restrained stiffness matrix for an element, expressed in terms of global variables, 
e

RK , can be 

obtained from the element transformation matrix and the element stiffness matrix, expressed in terms 

of local variables, using the relationship given in Equation (4.10): 

 

e

eT

e

e

R Q.k.QK   

 

The restrained element stiffness matrices for all elements are given in Table D.. 

 

Table D.6: Restrained element stiffness matrices 

 



































0

096000sym.

0016000

0480001000030250

048000100001775030250

0400008000150002500041500

k1

R

 

 






























0

025000sym.

00150000

0125004000030250

00000

000000

k2

R

 

 






























41500

4000096000sym.

8000016000

0000

00000

000000

k3

R

 

 



































41500

1000025000sym.

75000015000

0000

150001250040000030250

33500100007500002500041500

k4

R

 

 

The Global stiffness matrix for the whole structure, expressed in terms of the global variables, is 

obtained by summing the element stiffness matrices.  
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







































83000500008300001500033500

500002420000605006050050000

830000332000500005000083000

06050050000605001775015000

150006050050000177506050050000

335005000083000150005000083000

KR  

 

6. Assemble the force vector 

The finite element equation was obtained in Chapter 2 using the principle of virtual work for the case 

where the external forces were applied at nodal points only. The finite element equation can be 

expanded to include the effects of any traction, T, applied on the surface of an element or any body 

force, , acting within the body of an element. 

To make the nodal forces statically equivalent to the actual boundary tractions or body forces, the 

principle of virtual work is employed. An arbitrary virtual nodal displacement is imposed to the body 

and the external work done by the various forces and tractions during that displacement are calculated 

and equated to the internal virtual work. 

Lets assume that the virtual displacement *e is applied at the nodes of an element. This results in 

virtual displacements, *, and virtual strains, *, within the element: 

 
e*δ.Ny)(x,*δ    and 

e*δ.By)(x,*ε   

The work done by the nodal forces is equal to the sum of the products of the individual force at each 

node and the corresponding displacement.  

 
eeT

1ext .f*δ)(W   

where fe is the vector of nodal forces. The external virtual work done by tractions per unit area and the 

external virtual work done by distributed body forces per unit volume are: 

T*δ)(W T

2ext  = .TN*δ TeT  

.γ*ε)(W T

3ext  = .γB*δ TeT
 

Equating the total external work with the total internal work obtained by integrating over the volume 

of the element results in a more general finite element equation: 

 

dvγ.Bds.TNf.δk TTeee

   (B.16) 

The expression on the right-hand-side of Equation (B.16) may be used to calculate the “consistent 

nodal forces” for the element. 

For the problem of the long block, the external tractions are applied at elements 1 and 4. The 

equivalent nodal forces due to the tractions are calculated for each of the elements and then included 

into the global force vector. 

Element 1 is subjected to an external uniform traction in the y-direction, Ty=-100kPa.  
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kPa
100

0

T

T
T

y

x




















  

The shape functions for element 1 are: 

 




















































2A

)xy(x)yx(y)yxy(x
2A

)xy(x)yx(y)yxy(x
2A

)xy(x)yx(y)yxy(x

N

N

N

N

12211221

31133113

23322332

3

2

1

=























20.4y

0.2y0.25x

10.2y0.25x

 

Therefore 

































3

3

2

2

1

1

1

q

p

q

p

q

p

f = 


































 dx
T

T

N0

0N

N0

0N

N0

0N

.T.dxN
y

x

3

3

2

2

1

1

T  

The traction is applied on the top surface of element 1 which has a constant y coordinate, y = 5m. For 

unit thickness of the element, the surface can be described as: 

 

ds = dx,    x = 0  4m    and    y = 5m 

 

Therefore the consistent nodal forces are calculated for a unit thickness of the element by the 

following equation: 

 

dx.TNds.TN TT

   

 

The shape functions shall be expressed for the surface, a cross section of which connects node 1 to 

node 2, where y = 5 m:  

 




































0

0.25x1

0.25x

N

N

N

N

3

2

1

 

 

Therefore the consistent nodal forces for element 1 can be calculated as: 

































3

3

2

2

1

1

1

q

p

q

p

q

p

f = 


































 dx
T

T

N0

0N

N0

0N

N0

0N

.T.dxN
y

x

3

3

2

2

1

1

T = 







































dx

100

0

00

00

0.25x10

00.25x1

0.25x0

00.25x
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











































































100

0

00

00

0.125xx0

00.125xx

0.125x0

00.125x

q

p

q

p

q

p

f

40x

2

2

2

2

3

3

2

2

1

1

1 = kN/m

0

0

200

0

200

0







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







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















 

The nodal forces applied on element 1 can be written in terms of the global degrees-of-freedom as: 
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0

0

0

200
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0

f

f

f

f

f

f
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
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
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
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
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
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


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





  

 

 

Similarly, the consistent nodal forces for element 4 can also be obtained: 
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a3

4

a2

4

a1

4T

4

4

R



































































  

The nodal forces applied on elements and expressed in terms of global degrees-of-freedom can now 

be added together directly to form the global force vector. 

 









































































500

0

0

200

200

500

f

f

f

f

f

f

F

a6

a5

a4

a3

a2

a1

R
 

7. Solve the global equations to obtain the unknown nodal displacements 

The finite element equations can now be solved for the unknown nodal displacements 

RRR FΔ.K   

or 
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







































































































500

0

0

200

200

500

a

a

a

a

a

a

83000

50000242000sym.

830000332000

0605005000060500

1500060500500001775060500

335005000083000150005000083000

6

5

4

3

2

1

 

The unknown displacements can be obtained as: 

 

R

1

RR F.KΔ   

















































































































































0.008

0.00125

0.004

0.0025

0.0025

0.008

500

0

0

200

200

500

0.3182

0.13190.1220sym.

0.08160.03390.0788

0.17160.12330.11220.3939

0.02840.06420.01220.01890.3939

0.07820.03190.03840.02840.17160.3182

1000

1

a

a

a

a

a

a

6

5

4

3

2

1

 

 

 

Then the nodal displacements are: 

 

Unrestrained 

DOF 

u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 

Global DOF -0.008 0.0025 0 0.0025 -0.004 0.00125 -0.008 0 0 0 

 

8. Calculate strains and stresses for each element 

The nodal displacements can be used to find the strains and the stresses within each element. For 

example consider element 2. The nodal displacements for element 2 are: 

 

Local DOF for element 

2 

u2 v2 u5 v5 u3 v3 

Global DOF 0 0.0025 0 0 -0.004 0.00125 

So that the vector of nodal displacements for element 2 is: 

R2

2 Δ.Qδ   { 0 , 0.0025 , 0 , 0, 0.004 , 0.00125}T   

The strains for element 2 can be calculated as: 

 
2

2 δ.By)ε(x,   

























0.5000.250.200.250.20

000.2000.200

00.5000.2500.25

B2  
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























































































0

0.0005

0.002

0.00125

0.004

0

0

0.0025

0

0.5000.250.200.250.20

000.2000.200

00.5000.2500.25

γ

ε

ε

xy

yy

xx

 

Note that the strains are independent of the coordinates, i.e., the strains are constant within the 

element.  

Once the strains are known the stresses can be found as: 

 
y)ε(x,D.y)σ(x,   



















2000000

012000080000

080000120000

D  

kPa

0

100

200

0

0.0005

0.002

.

2000000

012000080000

080000120000

σ

σ

σ

xy

yy

xx







































































 

Similar calculations can be made for all elements.  
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SOLUTIONS TO SELECTED PROBLEMS 

Problem 1.4. Settlement of soils 

1) 
   u x x u x du

x dx


  
 


  

  

2)  E x    

 

3) 0
d

dx



   

4)      
d du

E x +γ=0    u 0 =0    σ H =P
dx dx

 
 
 

 

5)  
2

0 02

x P H
u x x

E E

 
    

 
0

Px
s x

E
   

 

 
0 0

x P H
x

E E

x x P H

 


 


   

    

 

Problem 1.5. Steel bar with variable area  

1) 
d du

AE 0
d dx x

 
 

 
     u 0 =0        

L

P
σ L =

A
 

2) 
*

L
*

0

du du
AE d Pu (L)

d d
x

x x
  

3) 

 

1 2
1

1

1 2 2 L
2 2

3
2 L 2 L

A +A
2A 0

2 u 0
A +A A +AE

2A u 0
Δx 2 2

u P
A +A A +A

0
2 2

 
 

    
      
    
        

 
  

 

 

4) A1= 0.0088 m2   A2 = 0.0076 m2    AL= 0.0064 m2 
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1

6

2

3

1 1 2 2 2 2

u 0.1773

u 0.33806  10 m

u 0.6187

u(x) = u N (x)+u N (x)+u N (x)

        



   
   

 
   
      

 

5)    0

0

A +αp
u ln

Eα A

x
x

 
  

 
     L 0A A

α=
L


 

 

 

 

Problem 2.1. Bar element 

1) 2 1

2 1 2 1

x x x x

x x x x
=

  
 
  

eN           

 

2) 
1 1

Δx Δx

 
  
 

eB  

3) Assuming E constant 

1 1E

1 1Δx

 
  

 

ek
 

 

4) Assuming f(x) constant 

e

1fΔx
=

12

 
  

 
F  

 

5) From 3) and 4) 

1

2

1fΔx

12

u1 1E

u1 1Δx

   
  



 
  

   
 

 

 

Problem 2.2. Element stiffness matrix of a second order 1D bar 

The shape function of the element are given by the figure 
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1 2

xx1 x2

N(x)

1

N1

N2

N3

3

x3

0
 

 

The restricted stiffness matrix is given by 

22 23 2 2

32 33 3 3

k k u p

k k u p

     
     

     
 

Calculation of the shape function 

2

3

( )

( / 2)( / 2)

( / 2)

L.(L/ 2)

x x L
N

L L

x x L
N








 

then 
2 2 2 2

2 32 2 2 2

x Lx x +Lx x 4x/2 2x +Lx
N = =       N = =

L /4 L /4 L /2 L

  


 

Calculation of the B function from the derivatives of the shape function 

2 32 2

2x+L 4x+L
B =       B =

L /4 L


 

Calculation of the elements of the stiffness matrix 
L

2

22 2
0

16E
k = B Edx=

3L  
L

2

33 3
0

7E
k = B Edx=

3L  
L

23 2 3
0

8E
k = B B Edx=

3L


  

Calculation of the load vectors 
L

2 2
0

2
p = N fdx= fL

3   
L

3 3
0

fL
p = N fdx=

6  

 

Problem 2.3. Beam element 

*The analytical solution for the deflection of the cantilever with uniform distributed load (Dead Load 

Case) (see problem XX in Chapter XX) is: 

 
2

4 3 21
( )

24 6 4

w wL wL
v x x x x

EI

 
   

 
 

 

Consequently, the moment can then be calculated as: 
2 2

2

2

2
2

( )
2 2

( )
2 2

d v w wL wL
M x EI x x

dx EI EI EI

w wL
M x x wLx

      

   

 

 

And shear as a function of the position is calculated by: 



 

 

 

 

178 

( )
( )

dM x
S x wx wL

dx
     

The numerical solution can be calculated by:  

e e
F = k v  

 

Where v1=0 and θ1=0 (restrained): 

 

3 2 3 2

2 2

3 2 3 2

2 2

1 1 1 112 6 12 6

18 6 18 6

1 2 1 16 4 6 2

6 3 6 3

12 6 12 6 1 1 1 1

18 6 18 6

6 2 6 4 1 1 1 2

6 3 6 3

e

L L L L

L L L L
k EI EI

L L L L

L L L L

  
   

  
   
  

    
       
  
  

   
   

 

 

 

 

For the boundary conditions of the propped cantilever, the matrix has been partitioned to find v2 and θ2: 

 

2

2

1 1

24.7 18 6

24.7 1 2

6 3

v
EI



 
    

     
    

  

 

2

2

72 18 24.72 0.003111

18 6 24.72 0.00069

v

EI

        
         

        

 

Now using the shape functions already calculated from before the deflection for the numerical solution can now be 

calculated. 

 

 1 1 1 2 2 3 2 4( ) ( ) ( ) ( )v x v N x N x v N x N x    
 

2 3 2 4( ) ( ) ( )v x v N x N x 
 

2 3
2 3

2 3 2 4 2 3 2

3 2
( ) ( ) ( ) ( ) 0.00311( ) 0.00069( )

x x
v x v x v N x N x x x

L L L L
         

 

 

Now the bending moment can be calculated by: 

1

2

24.72

24.72

24.72

24.72

R

R
F

 
 

 
 
 
 

2

2

0

0
v

v



 
 
 
 
 
 
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2

2 22 2 3 2

( ) 6 12 2 6
( ) ( )

d v x x x
v

dx L L L L
    

 

 

2

2

( )
( )

d v x
M x EI

dx
 

 
2

2 22 2 3 2

( ) 6 12 2 6
( ) ( ) ( )

d v x x x
M x EI EIv EI

dx L L L L
       

 

 

Consequently shear is thus given by: 

2 2

3 2

12 6( )
( )

EIv EIdM x
S x

dx L L


  

 
 

Thus, the plots for deflection, moment and shear can be produced as a function of position along the 

beam. For ease of comparison the analytical and finite solutions have been plotted on the same graphs. 

This is shown in Figures 4, 5, 6 respectively 

 

 

 
 

For the problem above, the numerical solution approximates the displacement along the beam using a 

polynomial. There a four degrees of freedom (and thus four unknown coefficients) for the beam element. 

Thus, a cubic curve is used to approximate the strains and displacements. However, from the analytical 

solution (derived from the strong form) the deflection curve obtained is quartic. Both methods will 

produce the same calculated values at the nodes as demonstrated in Figures 4 and 5, yet the values in 

between nodes will be different because the curves are not the same within their respective domains. This 

correlation is clear from all the plots and calculated results.  

 

Problem 3.1. Trusses1 

9

1 1 / 2 2 1 / 2 2 0 0 1.3536 -0.3536 0 0

-0.3536 1.3536 0 11 / 2 2 1 1 / 2 2 0 1
2 10         

0 0 1 00 0 1 0

0 1 0 10 1 0 1

EA N

L m

    
   

      
   
   

    
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Problem 3.2. Trusses2 

 

8

1 / 3 0 0 0 0.5774 0 0 0

0 1 0 1 0 1 0 1
2 10       

0 0 0.9524 0.21650 0 1 / 3 3 / 8 3 / 8

0 1 0.2165 1.12500 1 3 / 8 9 / 8

EA N

L m

   
           
   

      
 

Problem 3.3. Trusses3 

1) Element a connects node 1 and node 2 with θ = 45o.  Element b connects node 2 to node 3, thus 

θ = 180o 
 

ba
21 21

ba
21 21

ba
32 32

ba
32 32

uu0.5 0.5 0.5 0.5 1 0 1 0 pp

vv0.5 0.5 0.5 0.5 0 0 0 0 qqA.E A.E
  ; 

uu0.5 0.5 0.5 0.5 1 0 1 0L pp2 L

vv0.5 0.5 0.5 0.5 0 0 0 0 qq

           
       

          
         
       

             







 

 

2)  

Element (a):           

a

1 1

a

1 1

q

2 2

a
2 2

3

4

u p0.5 0.5 0.5 0.5 0 0

v q0.5 0.5 0.5 0.5 0 0

u p0.5 0.5 0.5 0.5 0 0A.E

v0,5 0.5 0.5 0.5 0 02 L q

u0 0 0 0 0 0 0

0 0 0 0 0 0 u 0

     
   

     
    

    
     

   
   

        

 

Element (b):            

1

1

b

2 2

b

2 2

b

3 3

b

3 3

0u0 0 0 0 0 0

0v0 0 0 0 0 0

u0 0 1 0 1 0 pA.E
  

0 0 0 0 0 0L v q

0 0 1 0 1 0 u p

0 0 0 0 0 0 v q

   
   
   
   

    
   
   
   

        
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3) 

a
1 11

a
1 11

a b
2 22 2

a b
2 22 2

b
3 33

b
3 33

1 2 2 1 2 2 1 2 2 1 2 2 0 0 u pp

v q1 2 2 1 2 2 1 2 2 1 2 2 0 0 q

u pp +pA.E 1 2 2 1 2 2 1 2 2 1 1 2 2 1 0

v qL q +q1 2 2 1 2 2 1 2 2 1 2 2 0 0
u pp0 0 1 0 1 0
v qq0 0 0 0 0 0

      
     

      
            
         
    
         





 
 
 
 
 
 

 

 

4) Eliminating the rows and columns of the restricted nodes and using  p2 = 0, q2 = -Q 

 

2

2

u1 2 2 1 1 2 2 0A.E

v QL 1 2 2 1 2 2

     
         

 

  

5)  2

2

1 1 1u 0L L.Q

v QA.E A.E.1 1 2 2 1 2 2

      
       

         

 

 

Problem 3.4.  Trusses 4 

The analytical deflection is given by 
2

4 3 21
( )

24 6 4

w wL wL
v x x x x

EI

 
    

 
 

The finite element solution of the deflection is 
2 3

2 3

2 3 2 4 2 3 2

3 2
( ) ( ) ( ) ( ) 0.00311( ) 0.00069( )

x x
v x v x v N x N x x x

L L L L
           

Where  

2

2

1 1

24.7 18 6

24.7 1 2

6 3

v
EI



 
    

     
    

  

 

 

Problem 3.5. solver  and pre- and post-processing  

(red corresponds to unnecessary steps) 

PREPROCESSOR 

p) input nodes 

q) input elements 

r) input material 

properties 

s) input boundary 

conditions 

PROCESSOR 

t) create element matrix equations 

u) invert element matrix equation 

v) assembly un-restrained global matrix 

equation 

w) invert unrestrained global matrix 

equation 

x) apply boundary conditions 

y) invert global stiffness matrix 

POST-PROCESSOR 

z) calculate nodal loads 

aa) calculate nodal 

displacement  

bb) calculate displacement at 

the domain 

cc) calculate stress at the 

domain 

dd) calculate stress at the 

nodes 
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Problem 3.6. two bar elements 

1)  

a
1 1a

a
2 2

u1 1 pAE
=

u1 1L p

    
   

     
 

b
2 2b

b
3 3

u1 1 pAE

u1 1L p

    
    

     
 

2)  

a

1 1

aa
2 2

3

1 1 0 u p
AE

1 1 0 u = p
L

0 0 0 u 0

    
    

     
         

 

1

bb
2 2

b

3 3

0 0 0 u 0
AE

0 1 1 u p
L

0 1 1 u p

     
     

 
     
          

 

3) 

a

a a 1 1

a b

a a b b 2 2 2

b

b b 3 3

E E 0 u p
A

E E +E E u p +p
L

0 E E u p

    
    

       
         

 

4) 
a b b 2

b b 3

E +E E u 0A

E E u PL

     
          

 

5) B aE =cE
2a

3

u1+c c 0AE

uc c PL

     
     

    
 

1

2

3 a

u 1 c c 0PL

u c c 1AE


      

     
     a

1 1
0PL

c 1
1AE 1

c

 
        

 
a

1
PL

c 1
AE

c

 
  
 
 

 

 

Problem 4.1.Poisson Ratio 

xxσ 0  
yy zzσ =σ =0  

xx

σ
ε =

E

xx , 
yy xx yy xxε = σ ε = ε

E


    

ΔL' ΔL
L' ΔL L' 0.3mm

L L
           

 

Problem 4.2.Biaxial Test 

xxσ 200kPa   

yyσ 100kPa   

zz xx yyσ = (σ +σ )= 120kPav   

-3

xx xx

-4

yy yy αβ

zz zz

ε 1 σ 2 10
1

ε 1 σ 5 10         γ =0
E

ε 1 σ 0

v

v v

v v

          
      

          
              

 

xxΔL=ε 4m= 8mm   

yyΔW=ε 5m=2.5mm  

Δt=0  
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Problem 4.3. Thin Steel Plate 

6

xx

6

yy αβ

6

zz

ε 1 1MPa 5 10
1

ε 1 0 1.5 10        γ =0
E

ε 1 0 1.5 10

v

v v

v v

 





        
      

           
                

 

6ΔL=5×10 ×800 mm=0.004 mm
 

6ΔW= 1.5×10 ×400mm= 0.0006mm   
6 6Δt= 1.5×10 ×1 mm = 1.5 10  mm     

 

Problem 4.5. rotation of stress 

Tx = 86.6025 MPa Ty = 50 MPa 

 

Problem 6.1. Finite Element Formulation using triangular elements 

1) 
T (x,y)=[1 x y]g           

1 4 5

C= 1 0 5

1 2 2.5

 
 
 
  

 

T 1

1 2 3

1

[N (x,y) N (x,y) N (x,y)] (x,y)

1 4 5 10 0 20
1

[1 x y] 1 0 5 [1 x y] 2.5 2.5 0
10

1 2 2.5 2 2 4

[ 1+0.25x+0.2y 0.25x+0.2y 2 0.4y]







   
   

  
   
      

   

g C

 

 

2)  

e

1 1 2 2 3 3

1 1 2 2 3 3

1

1

1 2 3 2

1 2 3 2

( ) ( ) 3

3

u(x, y)   N (x, y)u   N (x, y)u   N (x, y)u

v(x, y)   N (x, y)v   N (x, y)v   N (x, y)v

u

v

N 0 N 0 N 0 uu(x, y)

0 N 0 N 0 N vv(x, y)

u

v

  

  

 
 
 
   

     
     

 
 
  

u x N x

u
e  

3)  
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1 2 3e e

1 2 3

0
x 0.25 0 0.25 0 0 0

N 0 N 0 N 0
0 0 0.20 0 0.20 0 0.40

0 N 0 N 0 Ny
0.20 0.25 0.20 0.25 0.40 0

y x

 
 
   
     

                 
 
  

B LN
 

 

4) 

λ 2G λ 0 120 80 0

λ λ 2G 0 80 120 0 MPa

0 0 G 0 0 20

   
   

  
   
      

D  

 

5)  

e eT e eT e

V

dV At

41.5 25 33.5 15 8 40

30.25 15 17.75 10 48

41.5 25 8 40 MPa
=

30.25 10 48 m

Sym. 16 0

96

e

 

   
 

  
 
  
 

 
 
 
 

k B DB B DB

 

 

Problem 7.1. Thermal load 

 1 2 in

in 1

T T h
= T T

L k


  

 out1 2

2 out

hT T
= T T

L k


  

1T =5.54°C  

2T =4.82°C =  

1 2

2

T T W
q=k =144.6

L m


 

 

 

Problem 7.2. Thermal load 2 

1) 
3Q=50 kwatts/m  

 

2) 

2

02

x=L

d T Q dT
=     T(0)=T      =0

dx k dx
   
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3) 0

Q
T(x)= x(2L x)+T

2k
  

4) 

2

0 c2

x=L

d T Q dT
=     T(0)=T      k =h (T(L) T )

dx k dx
ref    

2

c 0 ref c
2

0

c

Q
L h (T T )h + QL

Q 2kT(x)= x x+T
2k k + h L

 

   

 

Problem 7.4. Finite different solution of the transient heat equation 

Finite different solution  

j j j j+1 j 1 j 2

j j j+1

cΔ t
u (t+Δt)=q (t+Δt) F (t)+ + β [u (t)+ u (t) 2u (t)]   where β =

Δz

The solution is numerically stable w

= +

(t+Δt) (t)
=

Δt

(t

in β 1/2.  If β

+Δt)= (t)+( )Δ

1/2

1
(t+Δt)=F (t)+ [u (t)+

t

2
u u

 


 







 



Ku u F

u u
Ku F

u u Ku F

j 1(t) ]  

 

 

Problem 7.5. Finite element solution of the transient heat equation 

Weak form 
L L*

*

v

0 0

u u u
c dx= u ( F(x,t)dx   

x x t

  


      

 

   j j

n

j=1

u x = xu N  

Replacing in the weak form 
L L

j

i j i

0 01

F(x,t)
du

N N dx N dx
dt

n

j

 
 

 
   

 

 

-1

= +

(t+Δt) (t)
=

Δt

(t+Δt)= (t) ( )Δt




 

  

Ku Cu F

u u
C Ku F

u u C Ku F

  

 

Problem 8.1. Structural mechanics: bending of beams 

a)    
22dead livew +w

v x x x
24EI

L   
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b)  

Only approximate: 

 Exact solution is a fourth order polynomial. 

 Approximated finite element solution is a third-order polynomial. 

 

Problem 8.2. Structural Mechanics: bending of  cantilever beams 

1) 
2 2 2 3

2 2 2 3

x=0 x=L x=L

d d v dv d v d v
EI =w      v(0)=0,  θ(0) =0,  M(L)= EI =0,  Q(L)= EI =P   

dxdx dx dx dx

 
   

 
 

 

2)  
4

4

3

13

2
2

1 22

3 21

2 3

4 3 21 2

3 4

d v w
=

EIdx

d v w
= x+C

EIdx

d v w
= x +C x+C

2EIdx

Cdv w
= x + x +C x+C

dx 6EI 2

C Cw
v(x)= x + x + x +C x+C

24EI 6 2

 

 

Applying boundary conditions  

 

4

3

1 1

2 2 2 2 2

1 2 2 1

(0)=0  C =0

θ(0)=0  C =0

P wL P+wL
v'''(L)= +C = C =

EI EI EI

wL wL PL+wL wL 2PL+wL
v''(L)=0 +C L+C =0 C =

2EI 2EI EI 2EI 2EI

v

P

EI

C L





    

      

 

Replacing the constant into v(x) 
2

4 3 2w P+wL 2PL+wL
v(x)= x x + x

24EI 6EI 4EI
  

 

3)   

 

Deflection 
2

4 3 2w P+wL 2PL+wL
v(x)= x x + x

24EI 6EI 4EI
  

Rotation 
2

3 2dv w P+wL 2PL+wL
θ(x)= = x x + x

dx 6EI 2EI 2EI
  

Curvature 
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2
2dθ w P+wL 2PL+wL

κ(x)= = x x
dx 2EI EI 2EI

     

Moment 
2

2w 2PL+wL
M=EIκ= x (P+wL)x

2 2
    

Shear force 

dM
Q= = w(L x) P

dx
   
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Problem 8.3. Rotational stiffness of bended beams 

Equilibrium equation 

2

1 2 12

d v x
EI M +(M M )

dx L
   

Integrating 

3 22 1 1
1 2

M M M
 v(x)= x x C x+C

6EIL 2EI


   

Using boundary condition  v(0)=0    v(L)=  

2

2 1 1
1

 v(0)=0     C 0  

M M ML
v(L)=      C ( )

L EI 6 2

 


      

Replacing into the solution 

3 22 1 1 2 1 1M M M M M ML
 v(x)= x x ( ) x

6EIL 2EI L EI 6 2

  
    

 
 

Taking the derivative we get the rotation 

22 1 1 2 1 1M M M M M ML
 θ(x)= x x ( )

2EIL EI L EI 6 2

 
     

Calculating the rotation at the end points x=0 and x=L 

1 2 1

2 2 1

L
θ = (M 2M )

L 6EI

L
θ = (2M M )

L 6EI


 


 

 

The solution is  

1 1 2

2 1 2

2EI
M 2θ θ 3

L L

2EI
M θ 2θ 3

L L

 
   

 

 
   

 

 

 

Problem 8.4. Frame buckling using beam elements 

1.  

2

2( )
c

EI
P

kL




 

 where L is the actual column length.  The factor k relates the column in the frame to the simple 

“Euler” case of a pin-ended column of length kL. 
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2.  

Using the slope-deflection equations (below)    
L

EI9

L

EI6

L

EI3
B   

 

3.  

Considering one column, stiffness at base is zero, at top:  

L

EI9

L

EI6

L

EI3
B  ,    

k is the column effective length factor. Also, 

0    A B cM M P     .   

The second equation 

(1 cosec ) ( 1 cot ) 0c
A B c

B

P L
M M P

k k k k

   


      

 

Reduced to 

cot 0c

B

P L

k k

 


 

 

We obtain 

)
k

cot(9
k





 

Which is solved using Newton-Rapson or graphically. The result is k = 2.22 

 

4.  

Using the slope-deflection equations (below)   B

3EI 2EI 5EI
α = + =

L L L  

 

5.  

Considering one column, stiffness at base is zero, at top:  

B

3EI 2EI 5EI
α = + =

L L L ,    

k is the column effective length factor. Also, 

0 and 0AM    .   

Using the second equation 

(1 cosec ) ( 1 cot ) 0c
A B c

B

P L
M M P

k k k k

   


      

 

We obtain 

1 cot 0c

B

P L

k k

 


  

 

thus 
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5

1

)
k

(

1)
k

cot(
k

2







 

Which is solved using Newton-Raphson or graphically. The result is k = 0.80377 

 

 

Problem 9.1. Isoparametric formulation of high-order 1D element 

1

2

1 2 3

1 1 1

N N N 1 η η 1 0 0

1 1 1


 

        
  

 

2

0 1 0

1 1
1 η η 0

2 2

1 1
1

2 2

 
 
 
      
 
 
 

 

2 2 21 1 1 1
η η ,1 η , η η

2 2 2 2

 
     
 

 

 

Problem 9.2. Numerical error in isoparametric formulation 

 

1. Domain 

approximation error 

Large, due to the approximation of the circular hole by a hexagon. 

2. Computational error Zero, because the elements of the stiffness matrix are calculated 

analytically (all integrals have exact solution) 

3. Piecewise polynomial 

approximation error 

Large, stress of the finite element solution is constant in each element. 

 

Problem 9.3. Thin plate with a hole 

1)  

Boundary x-displacement (u) y-displacement (v) Traction (T) 

Top 
Free Free 0 

Bottom 
Free Fix 0 

Left 
Fix Free 0 

Right 
Free Free  (1MPa,0) 

Hole 
Free Free 0 
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2)  

 

Mesh Domain approximation 

error 

Computational error Piecewise polynomial 

approximation error 

 

 

1 

 

 

Small: Due to the 

approximation of the 

hole by a reasonable 

number of quadratic 

functions 

Large in the transition 

elements which is outside of 

the region of interest. Small 

in the other elements. 

Relatively small near to the 

maximal stress. The error is 

due to the exponential change 

of stress that needs to be fitted 

by linear relations. 

 

 

 

2 

 

 

 

Very small: Due to the 

approximation of the 

hole by  a large number 

quadratic functions 

 

 

Small due to the low 

distortion of the elements but 

large at the transition zone 

due to mesh incompatibility. 

Relatively small near to the 

maximal stress. The error is 

due to the exponential change 

of stress that need to be fitted 

by linear relations. 

 

 

3 

 

 

Very small: Due to the 

approximation of the 

hole by  a large number 

quadratic functions 

High in the domain of 

interest, due to the high 

aspect ratio of the elements 

Large near to the maximal 

stress, due to the relatively 

large size of the elements. 

  

 

Problem 10.1. Spectral Response 

1.  

 

For the top mass: 

1 1 2 1 1 1 1 2 1 1( )k x x mx k x k x m x       

For the bottom mass: 

 1 1 2 2 2 2 1 1 1 2 2 2 2( )k x x k x mx k x k k x m x        

Writing these equation in a matrix form 

1 1 1 1 1

2 2 1 1 2 2

0 0

0 0

m x k k x

m x k k k x

         
          

          
 

The matrices can be calculated using the given values 

3
12 0 200 200 kN

10 kg    
0 24 200 300 m

   
     

   
m K  

 

 

2.  

We solve the characteristic equation 
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 

  

2

2

2

2

2 2 2 2 2 4 2

det 0

0
det det 0

3 0 2 3 2

3 2 2 5 0

k k m k m k

k k m k k m

k m k m k k mk m








   

 

        
         

        

       

K m

 

1

1 1

1

1

2 2

1

2 2
5.77 1.09

2
2.89 2.18

2

k
s T s

m

k
s T s

m















    

    

 

 

 

3.  

Mode 1 
2

1 1 1

1

0

0 0 12
0

3 0 2 0 1

k k m a k k a ak
a b a

k k m b k k b am

 

                   
                         

                    

KX MX

X
 

 

Mode 2 
2

1 1 1

2

0

0 / 2 1
0 0 2

3 0 2 2 2 22

k k m a k k a ak
a b a

k k m b k k b am

 

                
                      

               

KX MX

X
 

 

You are free to choose any value of a, here we choose a=1. 

 

4.  

 

 

 

 

 
1

0 1
1 1 1 1

0 2 1 2 1

0 1 3 3
1 1 1 1

0 2 1 2

m m

m m m

m m m

m m

     
      

          
     

      
      

 

 

 

 

 
2

0 1
1 2 1 2

0 2 1 2 5 5

0 1 9 9
1 2 1 2

0 2 2 4

m m

m m m

m m m

m m

     
     
          
     
     
     
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5.  

Maximal response of each mode 

 

 

1,max 1 1

2,max 2 2

1 1
1

3 3

5 7
0.7

9 18

a

a

S T g g

S T g g





     

     

 

Combination of the mode using the absolute sum 

max 1,max 1 2,max 2max

1 7
2 5

3 18
g g

  

 

X X X  

You can check that your answer does not depend on a 
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