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Abstract.  We simulate rock fracture using ESyS_Particle, the 3-D Discrete Element Model developed for modeling 

geological materials. Two types of simulations are carried out: Unconfined Compressive Test (UCT) and Brazilian 

Tensile Test (BTT). The results are compared to laboratory tests. Model parameters are determined on the basis of 

theoretical studies on the elastic properties of regular lattices and dimensionless analysis. The fracture patterns and 

realistic macroscopic strength are well reproduced. Also the ratio of the macroscopic strength of compression to the 

tensile strength is obtained numerically.  
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INTRODUCTION 

Discrete Element Method (DEM) has great 

advantages in modeling fracture process due to its 

discrete nature and the possibility to reproduce 

dynamic processes. However, two major difficulties 

hinder its applications in rock mechanics. The first one 

is the fact that it is very time-consuming because of its 

step-by-step updating style and small time step is 

required. The second problem is parameter calibration. 

In the most current DEM simulations, parameters are 

chosen based on the trial-and-error methods. In the 

previous analytical studies [1], we show how to choose 

the spring parameters according to the given 

macroscopic elastic constants. However, some 

parameters, such as strength of the bonds, can only be 

investigated numerically. In this study we simulate 

rock fracture using ESyS_Particle, the 3-D paralleled 

Discrete Element Model. We run two types of 

simulations: Unconfined Compressive Test (UCT) and 

Brazilian Tensile Test (BTT), and compare the results 

with the laboratory tests and discuss the limitations of 

the DEM model. 

ESYS_PARTICLE MODEL 

ESyS_Particle is the Discrete Element Method 

(DEM) developed in the University of Queensland [2, 

3, 4]. It includes explicit particle rotation and a 

complete set of interactions between particles [3, 4]. 

Figure 1 shows the six interactions (normal, shearing 

forces, bending and twisting moment) transmitted 

between 3-D bonded particles. The force-displacement 

law between two bonded particles can be written as        

rfr ∆= rK ,
1s1 sf ∆= 1sK ,

2s2 sf ∆= 2sK ,                

tt ατ ∆= tK ,
b1b1 ατ ∆= 1bK ,

b2b2 ατ ∆= 2bK .         (1)               

Where r∆ , is∆  are the relative displacements in 

normal and tangent directions. tα∆  and biα∆  are the 

relative angular displacements caused by twisting and 

bending. rf ,
s1f ,

s2f ,
tτ ,

b1τ  and
b2τ  are forces and 

torques, 
rK ,

1sK ,
2sK ,

tK ,
1bK and 

2bK are relevant 

stiffness. In this study, we assume that 

21 sss KKK ==  and 
21 bbb KKK == . Detailed 

description of the model can be found in [3, 4, 5].  

The following empirical criterion is used to judge 

whether or not a bond is going to break: 
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Where
r0F ,

s0F , 
0tΓ and

0bΓ  are thresholds for a 

bond to break under pure extension, pure shearing, 

pure bending and pure twisting respectively.  We set 

rf positive under extension and negative under 

compression such that the effects of normal force on 

breakage of the bond has been taken into account. 



0tΓ and
0bΓ  are not independent of 

r0F and
s0F . In 

this study we choose 4r0FRΓ =0b
 and 

2s0r0 RFF =  [3]. 

 

               
 

FIGURE 1.  Six kinds of interactions between bonded 

particles. 
rf  is normal force, 

s1f  and  
s2f  are shear forces , 

tτ  is twisting torque, 
b1τ  and 

b2τ  are bending torque. 

Calibration of the model parameters 

As the first step to compare simulations with real 

experimental data, we studied analytically the relation 

between contact stiffness and the macroscopic elastic 

constants of materials [1]. For example, in 3D case of 

Face-Centered Cubic (FCC) packing with equal sized 

particles, the realistic macroscopic elastic parameters 

(Young’s modulus and Poission’s ratio) are guaranteed 

if the normal, shear, bending and twisting stiffnesses in 

DEM are chosen as: 
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Where E, ν and R are Young’s modulus and 

Poisson’s ratio and radius of particles. 

Dimensionless analysis 

In the DEM simulation it is desirable to choose the 

contact parameters in such a way that they match the 

material constants of the model. Sometimes these 

parameters are rescaled up or down, and the new group 

of parameters may not match the laboratory data, then 

other quantities should be scaled up or down 

accordingly. Therefore it is convenient to make 

dimensional analysis of the parameters. In such way 

we can keep the scale invariance of the model and 

reduce the parameters to a minimum of non-

dimensionless constants [6].  

The equation of Newton 22
dtxdmF = , can be 

written in dimensionless form as 22
tdxdmF
~~~~

α= , 

where 
cFFF =

~
, 

cmmm =~ , 
cxxx =~ , 

cttt =
~

and 2

cccc tFxm=α , 
cx , 

cm , 
ct and 

cF  are  

the characteristic length, mass, time and force. Two 

models will be dynamically similar if                

              2

2222

2

1111 tFxmtFxm = ,                  (4) 

where 
1x , 

1m ,
1t ,

1F  and  
2x , 

2m ,
2t ,

2F  are the 

characteristic length, mass, time, force of model 1 and 

2 respectively.  For a pure mechanical system, there 

are three independent dimensions: mass, length and 

time. Therefore if any of the three ratios between two 

models in Equation 4 are determined, the ratios of 

other quantities (such as gravitational acceleration, 

spring stiffness and artificial damping parameters etc) 

must be fixed according to Equation 4. 

NUMERICAL SET UP AND RESULTS 

We simulate two different laboratory tests: 

Unconfined Compressive Test (UCT) and Brazilian 

Tensile Test (BTT). In UCT test a slow uni-axial 

loading is applied in axial direction of a cylindrical 

sample and the compressive strength is measured. In 

BTT test, the tensile strength is measured indirectly by 

loading a cylindrical sample in diametrical direction.  

The laboratory data (model 1) for UCT and BTT 

tests are listed in table 1. According to Eq. (3), the 

realistic spring stiffnesses are: 

 PaREK r

7

1111 1045312122 ×=−= .)( ν ,      

 ( ) ( ) 3131 111 rrs KKK =+−= νν  .  

In the simulation (model 2), we may scale up or 

down some quantities. If we choose normal stiffness 

PaKr 80002 = ,  and radius of grains  R2 = 1m and 

density 
2ρ  = 1.0 kg/m

3
 , we have 

100095012 −≈xx , 311475
3

11

3

2212 ≈= xxmm ρρ , 

4

12 1037862 ×≈ .tt and 2

12 109743
−

×= .VV .  Other 

quantities are: D2 = 49 m, H2 = 139 m, V2 = 

sm /.
71067581 −× , F2 = 161.85 kN, which is the value 

we try to reproduce for UCT tests.  

The initial set up of the UCT test is shown in Fig. 2 

(left). It contains 44394 particles. Time step 

incremental is dt2 = 0.001s, the simulation is run for Nt 

= 1.6 ×10
6
 steps on a supercomputer with 64 CPUs, 

and it requires about 50 hours to run for each 

simulation. 

X

Y
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s1f
s2f

tτ

b1τ
b2τ



However if the loading rate of sm /. 71067581 −×  is 

used, the calculation would be beyond the current 

computer power. In this simulations, we choose the 

rate of loading of sm /
4108 −× , which is 5000 times 

larger.  It is not a good strategy to increase the time 

step dt2 in order to reduce computer time, since the 

large time step would result in fast accumulated errors.  

While the spring parameters can be chosen 

according to the given macroscopic elastic constants 

(Equation 3), it is difficult to derive analytically the 

relation between the macroscopic strength and the 

strength of the bonds (
r0F and

s0F ). Therefore this is 

investigated numerically in this study. We choose 

different fracture parameters
r0F and

s0F , and 

numerically measure the maximum load. The results 

are list in table 2 and 3. The data with stars mean the 

maximum load mostly close to the laboratory data, and 

the ratio between UCT strength and BTT strength is 

about 10, slightly larger than that of the laboratory 

value of 6. The fracture pattern corresponding to the 

star value is shown in Fig. 2b (right). The colours 

represent vertical displacement. The macro-scopic 

shear fracture is clearly seen.   

 

                            
 

FIGURE 1.  Initial set up (left) and final fracture 

pattern (right) for UCT tests. 

 

It is also interesting to note from Table 2 and 3 that 

in UCT tests, the larger strength is observed for the 

large 
s0F for the same

r0F , but for the same 
s0F , the 

strength increases with the decrease of 
r0F , that is, 

the macro-scopic strength has a positive correlation 

with
r0F  and 

r0s0 FF , However, in case of BTT test,  

the macroscopic strength is not so sensitive to the ratio 

r0s0 FF , but has a strong dependence on 
r0F . This 

difference may be explained by the fact that in UCT 

tests macroscopic failures are mainly caused by shear 

fractures and in BTT tests they are mostly controlled 

by tensile fractures.  

SUMMARY AND DISCUSSIONS 

We reproduce the fracture patterns and realistic 

macroscopic strength.  In the laboratory tests, it is 

generally found that the macroscopic strength of UCT 

is 5-20 times larger than BTT. The UCT to BTT 

strength ratio of 10 is reproduced in the simulations.  

This ratio can be used as a good limitation to the 

microscopic parameters. Generally the macroscopic 

strength is found to have a positive correlation 

with
r0F  and

r0s0 FF . It should be bore in mind that 

although we reproduced the realistic strength by 

changing
r0F  and

s0F , it is not a unique combination 

of parameters. A more detailed investigation on the 

parameters of bond breaking should be done in the 

future.  

We conclude that using supercomputer facilities 

and dimensional analysis we can simulate samples 

with relative large number of particles and realistic 

materials properties. However, due to computer power, 

we employed a larger loading velocity in the 

simulations. The concern raised by such a larger 

loading rate is: how does the macroscopic strength 

change with loading velocity? To avoid this problem, 

one suggestion for the future simulation is that two 

loading rate may be used: faster loading rate during the 

earlier stage when the sample is relatively intact and 

realistic one in the latter stage when the sample is 

close to failure.   

It became also evident that the main limitation of 

the computer efficiency of DEM simulations is that the 

currently used integration methods are unstable for 

larger time steps. Therefore it is a challenge for the 

future to develop integration methods numerically 

stable for large time steps, and at the same time able to 

reproduce the realistic dynamics of the systems. 

 

 

 

 

 

 

 

 



TABLE 1. Laboratory data for UCT and BTT tests 

 

 UCT  test BTT  test 

Diameter (mm) D1  = 54.46 D1  = 54.46 

Height (mm) H1 =   147.05 H1 =   147.05 

Density (kg/m3) 
1ρ = 2711.6 1ρ = 2711.6 

Young Modulus (Gpa) E1 = 12.33 E1 = 12.33 

Poisson Ratio 
1ν = 0.2-0.25 1ν = 0.2-0.25 

Sizes of grains (mm) R1 = 1 R1 = 1 

Rate of loading  (m/s) V1= 4.2167 × 10-6 V1= 4.2167 × 10-6 

Maximum load  (kN) F1 = 311 F1 = 51.9 

   

 
TABLE 2. Modeled maximum load for UCT tests. 

Data with asterisk is the closest value to the 

experimental data. 

 

Fr0 (N)  Fs0 (N) Maximum load (kN) 

4.8 14.4 60696 

4.8 24 140000 

8 14.4 45758 

8 20 75475 

8 32 113798 

14.4 4.8 18000 

14.4 6.4 21432 

14.4 9.6 29040 

16 24 55195 

64 64 164422 *  

64 128 236588 

 

 

 
TABLE 3.  Modeled maximum load for BTT tests. 

Data with asterisk is the closest value to the 

experimental data 

 

Fr0 (N)  Fs0 (N) Maximum load (N) 

4.8 24 6337 

6.4 14.4 5000 

32 64 14025 

32 96 14101 

64 64 17814 * 

64 96 22337 

64 128 27161 
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