Analysis of the elasto-plastic response of a polygonal packing
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We investigate the constitutive response of two-dimensional packed samples of polygons using
molecular dynamics simulation. The incremental elasto-plastic response is examined in the pre-
failure regime. Besides the Young modulus and the Poisson ratio, an additional parameter must be
included, which takes into account the anisotropy of the elastic response. The plastic deformations
are described by the introduction of the yield and the flow directions. These directions do not agree,
which reproduces the non-associated feature of realistic soils. In order to detect the yield surface,
different loading-unloading-reloading tests were performed. During the reload path, it is found that
the yielding develops continuously with the amplitude of loading, which does not allow to identify

a purely elastic regime.

I. INTRODUCTION

Traditionally, the quasi-static deformation of soils has
been described by using constitutive laws. They are em-
pirical relations between the stress and the strain involv-
ing a certain number of material parameters, which, in
the simplest models, can be measured in experimental
tests [1-3]. However, the more sophisticated models in-
volve so many parameters that their direct experimental
meaning and their identification becomes impossible.

In the last years the numerical simulations have been
used as an alternative to study the behavior of soils. Usu-
ally, disks or spheres are used in order to capture the
granularity of the materials [4-7]. The simplicity of their
geometry allows to reduce the computer time of calcula-
tions. However, they do not take into account the diver-
sity of shapes of the grains in realistic materials.

A more detailed description is presented here by using
randomly generated convex polygons. The interaction
between the polygons can be handled by letting the poly-
gons interpenetrate each other and calculating the force
as a function of their overlap [8]. This approach has
been successfully applied to model different processes,
like fragmentation [9,11], damage [12,10], strain localiza-
tion and earthquakes [8]. The contribution of this work
is to determine the constitutive relation of this discrete
model material in the regime of quasi-static deforma-
tions. The results show that simple mechanical laws at
the grain level are able to reproduce the complex macro-
scopic behavior of the deformation of soils.

The details of the particle model are presented in Sec.
II. In addition to the normal contact force mentioned
above, the tangential contact force law is implemented
by a Coulomb friction criterion, and the boundary condi-

tions are modeled by the introduction of a flexible mem-
brane that allows to fix the stress value. The calculation
of the constitutive relations is presented in Sec. III. We
discuss the results in the framework of the classical theory
of elasto-plasticity. The summary and the perspectives
of this work are presented in Sec. IV.

II. MODEL

The polygons representing the particles of this model
are generated using a simple version of the Voronoi tessel-
lation: First, we choose a random point in each cell of a
regular square lattice, then each polygon is constructed
assigning to each point that part of the plane that is
nearer to it than to any other point. Each polygon is
subjected to interparticle contact forces and boundary
forces as we explain below.

When two polygons overlap, two contact points appear
form the intersection of their edges. The contact line is
defined by the segment connecting these two intersection
points. The contact force is calculated as

fe = kn Az + kyAzte, (1)

here ¢ and ¢ denotes the normal and tangential unitary
vectors with respect to the contact line, and k,, and k;
are the stiffness in the respective directions. The over-
lapping length Az is the ratio between the overlap area
of the polygons and the length of their contact line. Axz§
defines the elastic tangential displacement of the contact,
that is given by the time integral starting at the begin of
the contact

t
Azg = / o (EYO(f¢ — i)t (2)
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Where © is the Heaviside function and ¢§ denotes the
tangential component of the relative velocity v° at the
contact. U° depends on the linear velocity ¥; and angular
velocity @; of the particles in contact according to

17'c=17}—17j—u71-><&+c3j><8]-. (3)

The branch vector ﬁ-; connects the center of mass of par-
ticle ¢ with the point of application of the contact force.
This point is taken as the center of mass of the overlap-
ping polygon. Eq. (2) defines a limit of elasticity in the
contact force. When the contact force satisfies ff = pfS
the contact slips, giving rise to a plastic deformation.

The external forces are applied on the boundary
through a flexible membrane which surrounds the sam-
ple. Such a membrane is calculated using an iterative al-
gorithm, that selects the segments of the external contour
whose bending angle is smaller than a threshold angle 6;,
[13]. On each selected segment T' = Az1%1 + Azzis, we
apply an external force of the form

fb = —01Ax3%1 + 03Az133. (4)

Here #; and &3 are the unit vectors of the Cartesian
coordinate system. o1 and o3 are the components of the
stress we want to apply on the sample, as it is presented
in Sec. III.

FIG. 1. Schematic plot of the membrane obtained with
threshold bending angle 7 /2.

The contact forces and the boundary forces are in-
serted in Newton’s equations of motion which is solved
numerically using a predictor-corrector algorithm. In or-
der to enhance the stability of the numerical method and
to allow for rapid relaxation, some viscous forces are in-
cluded both in the contacts and in the boundaries:

F& = —m(1a08n° + y08i°),
f_q? = —m; Y05 . (5)

The contribution of these forces is almost negligible in
the quasi-static regime where velocities are small. They

are included only to reduce the acoustic waves emitted
when the system goes from one equilibrium state to the
other. m = (1/m; + 1/m;)~! is the effective mass of the
particles in contact, and m; is the mass of the particle ¢
in contact with the membrane.

There are three characteristic times in the simulation:
The relaxation time ¢, = 1/, the loading time ¢, and
the characteristic period of oscillation t; = 1/ky/mo.
Here mg is the mean mass of the polygons. This leads
to a minimum set of dimensionless parameters, whose
selected values are shown in the table.

variable ratio default value
time of relaxation tr/ts 0.1
time of loading to/ts 1250
friction coefficient n 0.25
stiffness ratio |ki/kn = Y¢/Vn 0.33
bending angle O:n /4

III. CONTINUOUS RELATIONS

The characterization of the macroscopic state of a
granular material in static equilibrium is usually given
by the Cauchy stress tensor. The derivation of this ten-
sor over a representative volume [14] leads to

1
ij = ZZQ??J‘}’ : (6)
b

The sub-scripts ¢ and j in Eq. (6) denote the com-
ponents of vectors and tensors. Here #° is the point of
application of the boundary force f_z'. This force is de-
fined in Eq. (4). A is the area enclosed by the boundary.
The sum goes over all the boundary forces of the sample.
Inserting Eq. (4) in Eq. (6) leads to

1 [ 013, 2Ay® 03>, 2" Az® )
A =01 X, yP Ay o33, yP At |

These sums can be converted into integrals over closed
loops. Then, the calculation of such integrals leads to

a=["1 0]. (8)

0(73

g =

Thus, the stress eigensystem coincides with the Cartesian
coordinate system used. We can reduce the notation in-
troducing the pressure p and the shear stress q in the
components of the stress vector

- P 101 +03
= =— . 9
o=[i]-3[nta] 0
In the same way, the incremental strain tensor can be

calculated as the average of the displacement gradient
over the area of the sample. It has been shown [15] that
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this average can be transformed into a sum over bound-
ary segments of the sample

1
b

Here N® is the 90° counterclockwise rotation of the
boundary segment T. The displacement of the segment
Az is calculated from _the linear displacement AZ and
the angular rotation A¢ of the polygon, according to

AZ = AT+ A x L. (11)

The vector 7 connects the center of the segment with
the center of mass of the polygon to which it belongs.

The eigenvalues de;, de3 of the symmetric part of de;;
define the volumetric and shear component of the strain
as the components of the incremental strain vector:

- | dey | | de1 + des
de_l:d€7:|_|:d61—d€3j|' (12)

From the macro-mechanic point of view, each state
of the sample is related to a single point in the stress
space, and the quasi-static evolution of the system is
represented by the movement of this point in the stress
space. The resulting deformation during the transition
from stress state & to & + d& is given by the incremen-
tal strain dé. In advance, let us separate the incremental
stress in its elastic (recoverable) and plastic (irrecover-
able) components:

dé = dé° + dev. (13)

Following the procedure proposed by Bardet [7] both
components can be obtained as it is shown in Fig. 2. Ini-
tially, the sample is in the stress state . Loading the
sample from & to & 4+ d& the strain increment dé is ob-
tained. Then the sample is unloaded, back to the original
&, and one finds a remaining strain dé?, that corresponds
to the plastic component of the incremental strain. For
small stress increments the unloaded stress-strain path is
almost elastic. Thus, the difference dé¢® = dé — déP can
be taken as the elastic component of the strain.

This procedure is implemented on one sample choosing
different stress directions. Fig. 2 shows the load-unload
stress paths and the corresponding strain response when
an initial stress state with ¢ = p/4 is chosen, correspond-
ing to o1 = 5p/4 and o5 = 3p/4, alarger stress in vertical
direction. The end of the load paths in the stress space
maps into a strain envelope response dé(f) in the strain
space. Likewise, the end of the unload paths map into
a plastic envelope response déP(0). The yield direction ¢
can be found from this response, as the direction in the
stress space where the plastic response is maximal. This
is close to @ = 90° in this case. The flow direction i is
given by the direction of the maximal plastic response in
the strain space, which is close to 70 in this example. We
found that these directions do not agree, corresponding

to a mon-associated flow rule as it is observed in exper-
iments on realistic soils [17]. If one approximates the
plastic envelope response by its projection in the flow di-
rection, the elastic response can be written as the simple
form

dev = (290 ;. (14)
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FIG. 2. Stress- and strain-relations resulting from the
load-unload test. grey lines represent the paths in the stress
and strain spaces. The dotted line gives the strain envelope
response and the solid line is the plastic envelope response.

The so-called hardening modulus h is the ratio between
the modulus of the maximal plastic strain and the modu-
lus of the incremental stress. The function (z) is defined
as zero if z < 0; Otherwise it is valued to z. The unit
vectors 1) and ¢ define the flow direction and the yield di-
rection, respectively. The vector dé defines the direction
and magnitude of applied load.
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FIG. 3. Elastic response dé® and plastic response dé® for different levels of pressure p and shear stress q. The envelope
responses result from the application of different loading modes with |d&| = 10~*p. The elastic response, calculated from Eq.
(13), has a centered ellipse as envelope response. The plastic strain response lies almost on a straight line oriented in the flow
direction. This direction does not correspond with the yield direction (dashed lines). The dash-dotted line represents the failure
surface. When a stress value above this line is applied the system fails. The solid line represents the plastic limit surface. The
latter is obtained connecting the points where the plastic deformation diverges. (That means dé”/|d5| — oco) The dashed line
q = 0.18p represents the limit of the zone where the isotropic elasticity assumption is valid. The plot shows the yield and the
flow directions as a function of the deviatoric stress ratio ¢/p, evaluated from the average over five different samples. These

calculations are made with fixed k, = 160 MPa.

Both elastic and plastic envelope responses are calcu-
lated from different stress values. The results are shown
in Fig. 3. The elastic response, calculated from Eq. (13),
has a centered ellipse as envelope response for all the
cases. Since the direction of this response does not al-
ways correspond to the direction of the volumetric strain
increment, the general form for the elastic stifftness must
be written as

2 [1—1/ —o

d&" =5 —a 1+4+v

= ] dé. (15)

Here E and v are the classical parameters of the elastic-
ity, i.e. the Young modulus and the Poisson ratio. They
are not material parameters because they depend on the
stress state we take. Moreover, an additional variable o
must be included in this relation, taking into account the
anisotropy of the elastic response. A limit of isotropy is
found around ¢ = 0.18p (See Fig. 3). Below of this line

the parameters of elasticity are almost constants with
a =~ 0. Above this limit the stiffness decreases as a re-
sult of open contacts, giving rise to an anisotropic elastic
response.

In a previous work [13], the elasto-plastic quantities
resulting form Eq. (14) and Eq. (15) have been evaluated
as a function of the stress state. Since the mechanical re-
sponse of soils depends not only on the initial stress state
but also on the way how this state is reached [16], these
results are only valid in the case of monotonic load. In
the classical theory of elasto-plasticity, the dependence of
the strain response on the history of the deformation is
described by the evolution of the so-called yield surface.
This surface encloses a hypothetical region in the stress
space where only elastic deformations are possible [18].

We attempt to detect the yield surface by using a stan-
dard procedure proposed in experiments with sand [17].
Fig. 4 shows this procedure: initially the sample is sub-
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ject to isotropic pressure. Then the sample is loaded in
the axial direction until it reaches a the yield-stress state
with pressure p and shear stress gq. Since plastic deforma-
tion is found in this stress value, the point (p,q) can be
considered as a classical yield point. Then, the classical
theory assumes the existence of a yield surface contain-
ing this point. In order to explore the yield surface, the
sample is unloaded in the axial direction until it reaches
the stress point with pressure p — dp and shear stress
g — 6p inside the elastic regime. Then the yield surface
is constructed by taking different directions in the stress
space for re-loading. In each direction, the new yield
point must be detected by a sharp change in the slope in
the stress-strain curve, indicating plastic deformations.

yield surface
yield point

Start of yielding

FIG. 4. Experimental procedure used to obtain the yield
surface. Load-unload-reload tests are performed, and the
points in the reload path, where the yielding begins are
marked. The yield function is constructed by connecting these
points.

Fig. 5 shows the strain response taking different load
directions in the same sample. If the direction of the
reload path is the same as that one of the original load
(45°), we observe a sharp decrease of stiffness when the
load point reaches the initial yield point, which corre-
sponds to the origin in Fig. 5. However, if we take a dif-
ferent direction of re-loading, we find that the decrease
of the stiffness with the loading becomes smooth. Since
there is no straightforward way to identify those points
where the yielding begins, the yield function, as it was
introduced by Drucker & Prager [18] in order to describe
a sharp transition between the elastic and plastic regions
is not consistent with our results.
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FIG. 5. Strain response resulting from the preparation of
the sample according to Fig. 4. The solid lines show the
strain response for different loading directions. The dashed
contours connect the strain increments values with the same
value of |[AG|. The Figure shows that in any reload path dif-
ferent to that one of the original load the yielding develops
continuously. Thus, it is not possible to distinguish an elastic
regime.

IV. CONCLUDING REMARKS

The incremental elasto-plastic response of a Voronoi
tessellated sample of polygons has been examined in the
framework of the classical theory. The resulting consti-
tutive relation leads to non-linear, anisotropic elasticity,
where the classical parameters of elasticity, the Young
modulus and the Poisson ratio, are not material con-
stants. The plastic response reflects the non-associated
features of realistic soils. Here the classical analysis of
Drucker & Prager is not applicable, because it is not
possible to determine an elastic regime.

Future work will be oriented to a micro-mechanically
based description of these elasto-plastic features. Since
the mechanical response of the granular sample is rep-
resented as a collective response of all the contacts, it
is expected that the macro-mechanical response can be
completely characterized by the inclusion of some field-
variables, which contain the information about the micro-
structural arrangements between the grains. Some statis-
tical variables like the fabric tensor have been included
as internal variables [6,19]. This description, however,
does not seem to offer a complete characterization of the
constitutive response. More salient aspects, such as the
yielding of the contacts, and the fluctuations of the stress
inside the granular material, might offer a more complete
set of internal variables for the description of the macro-
scopic state. This is, in our point of view, an important
challenge in the future.



Proceedings of IMECE’02

2002 ASME International Mechanical Engineering Congress & Exposition

IV. CONCLUDING REMARKS

New Orleans, Louisiana, November 17-22, 2002

ACKNOWLEDGMENTS

We thank F. Darve, P. Vermeer, F. Kun, and J.
Astrgm for helpful discussions and acknowledge the sup-
port of the Deutsche Forschungsgemeinschaft within the
research group Modellierung kohdsiver Reibungsmateri-
alen.

[1] P. A. Vermeer, ”A five-constant model unifying well-
established concepts” in Constitutive Relations of soils,
edited by G. Gudehus, F. Darve and L. Vardoulakis,
Balkema Rotterdam, 175-197 (1984)

[2] F. Darve, ”Incremental non-lineal constitutive relation-
ships” in Geomaterials Constitutive Equations and Mod-
eling, edited by F. Darve, Elsevier applied Science, Lon-
don 123-148 (1990)

[3] D. Kolymbas ”An outline of hypoplasticity” Arch. App.
Mech. 61, 143-154 (1991)

[4] P.A Cundall, "Numerical experiments on localization
in frictional materials” Ingenieur-Archiv, 59 879-908
(1989)

[5] F. Radjai, M. Jean, J.J. Moreau and S. Roux ”Force dis-
tributions in Dense Two Granular systems” Phys. Rev.
Lett. 77, 2 274-277 (1996)

[6] C. Thornton Computer simulated deformation of com-
pact granular assemblies Acta Mechanica 64, 45-61
(1986)

[7] J.P. Bardet, ”Numerical solutions of incremental re-
sponse of idealized granular materials” Int. J. Plasticity
10(8) 879-908 (1994)

[8] H. Tillemans and H.J. Herrmann, ”Simulating deforma-
tions of granular solid under shear” Phys. A 217, 261-288
(1995)

[9] F. Kun and H.J. Herrmann, ”A study of fragmentation
process using a discrete element method” Comput. Meth-
ods Appl. Mech. Engrg. 138, 3-18 (1996)

[10] G. A. Addetta, F. Kun, E. Ramm, ”On the application
of a discrete model to the fracture process of cohesive
granular materials” Granular Matter 4, 77-90 (2002)

[11] F. Kun and H. J. Herrmann, Fragmentation of Colliding
Discs, Int. Jour. Mod. Phys. C 7, pp. 837-855 (1996).

[12] F. Kun and H. J. Herrmann, ”Transition from damage
to fragmentation in collision of solids”, Phys. Rev. E 59,
2623 (1999).

[13] F. Alonso-Marroquin and H. J. Herrmann, ”Calculation
of the incremental stress-strain relation of a polygonal
packing” | Phys. Rev. E (2002) in press.

[14] K. Bagi, ” Microstructural Stress Tensor of Granular As-
semblies with Volume Forces” Journal of Applied Me-
chanics 66, 4 934-936

[15] N.P. Kruyt and L. Rothenburg, ”Micro-mechanical Defi-
nition of the strain tensor for granular materials” ASME
Journal of Applied Mechanics 118, 706-719 (1996)

[16] Y. F. Diafalas and E. P. Popov. ”Plastic Internal Vari-
ables formalism of Cyclic Plasticity” Journal of Appliedd
Mechanics 43 645-650 (1976)

[17] F. Tatsuoka and K. Ishihara, ”Yielding of sand in triaxial
compression” Soil and Foundations 14 , 2 63-76 (1974)

[18] D.C. Drucker and W. Prager. ” Soil Mechanics and plas-
tic analysis of limit design”, Q. Applied Math.10(2) 157-
165 (1952)

[19] M. Latzel, S. Luding, and H. J. Herrmann, ”Macroscopic
material properties from quasi-static, microscopic simu-
lations of a two-dimensional shear-cell” Granular Matter
2(3), 123-135, (2000)



